736
Views
0
CrossRef citations to date
0
Altmetric
Review

Evaluation of 5-Fluorouracil Pharmacokinetic Models and Therapeutic Drug Monitoring in Cancer Patients

&
Pages 799-811 | Published online: 08 May 2013

References

  • Touw DJ , NeefC, ThomsonAH, VinksAA. Cost–effectiveness of therapeutic drug monitoring: a systematic review. Ther. Drug Monit.27(1) , 10–17 (2005).
  • Mitchell PB . Therapeutic drug monitoring of psychotropic medications. Br. J. Clin. Pharmacol.52(Suppl. 1) , S45–S54 (2001).
  • Hiemke C , BaumannP, BergemannN et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44(6) , 195–235 (2011).
  • Bartelink IH , BrediusRG, VerversTT et al. Once-daily intravenous busulfan with therapeutic drug monitoring compared to conventional oral busulfan improves survival and engraftment in children undergoing allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 14(1) , 88–98 (2008).
  • Malar R , SjooF, RentschK, HassanM, GungorT. Therapeutic drug monitoring is essential for intravenous busulfan therapy in pediatric hematopoietic stem cell recipients. Pediatr. Transplant.15(6) , 580–588 (2011).
  • Evans WE , RellingMV, RodmanJH, CromWR, BoyettJM, PuiCH. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N. Engl. J. Med.338(8) , 499–505 (1998).
  • Saleem M , DimeskiG, KirkpatrickCM, TaylorPJ, MartinJH. Target concentration intervention in oncology: where are we at? Ther. Drug Monit.34(3) , 257–265 (2012).
  • Gamelin E , Boisdron-CelleM, Guérin-MeyerV et al. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: a potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J. Clin. Oncol. 17(4) , 1105–1110 (1999).
  • Capitain O , AsevoaiaA, Boisdron-CelleM, PoirierAL, MorelA, GamelinE. Individual fluorouracil dose adjustment in FOLFOX based on pharmacokinetic follow-up compared with conventional body-area-surface dosing: a Phase II, proof-of-concept study. Clin. Colorectal Cancer11(4) , 263–267 (2012).
  • Kaldate RR , HaregewoinA, GrierCE, HamiltonSA, McLeodHL. Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. Oncologist17(3) , 296–302 (2012).
  • Boisdron-Celle M . Pharmacokinetic adaptation of 5-fluorouracil: where are we and where are we going? Pharmacogenomics13(13) , 1437–1439 (2012).
  • Meyerhardt JA , MayerRJ. Systemic therapy for colorectal cancer. N. Engl. J. Med.352(5) , 476–487 (2005).
  • Twelves C , WongA, NowackiMP et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 352(26) , 2696–2704 (2005).
  • Andre T , BoniC, NavarroM et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol. 27(19) , 3109–3116 (2009).
  • Tournigand C , AndreT, BonnetainF et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the multicenter international study of oxaliplatin, fluorouracil, and leucovorin in the adjuvant treatment of colon cancer trial. J. Clin. Oncol. 30(27) , 3353–3360 (2012).
  • van Loon K , VenookAP. Adjuvant treatment of colon cancer: what is next? Curr. Opin. Oncol.23(4) , 403–409 (2011).
  • Benson AB 3rd, Bekaii-Saab T, Chan E et al. Metastatic colon cancer, version 3.2013: featured updates to the NCCN guidelines. J. Natl Compr. Canc. Netw.11(2) , 141–152 (2013).
  • Gusella M , CrepaldiG, BarileC et al. Pharmacokinetic and demographic markers of 5-fluorouracil toxicity in 181 patients on adjuvant therapy for colorectal cancer. Ann. Oncol. 17(11) , 1656–1660 (2006).
  • Milano GA , EtienneMC, RenéeN et al. Relationship between fluorouracil systemic exposure and tumor response and patient survival. J. Clin. Oncol. 12(6) , 1291–1295 (1994).
  • Gamelin E , Boisdron-CelleM, DelvaR et al. Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J. Clin. Oncol. 16(4) , 1470–1478 (1998).
  • Milano GA , EtienneMC, Cassuto-ViguierE et al. Influence of sex and age on fluorouracil clearance. J. Clin. Oncol. 10(7) , 1171–1175 (1992).
  • Etienne MC , ChatelutE, PivotX et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion. A NONMEM analysis. Eur. J. Cancer 34(1) , 92–97 (1998).
  • Saif MW , ChomaA, SalamoneSJ, ChuE. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J. Natl Cancer Inst.101(22) , 1543–1552 (2009).
  • van Kuilenburg ABP , HauslerP, SchalhornA et al. Evaluation of 5-fluorouracil pharmacokinetics in cancer patients with a c.1905+1G>A mutation in DPYD by means of a Bayesian limited sampling strategy. Clin. Pharmacokinet. 51(3) , 163–174 (2012).
  • Mattison LK , SoongR, DiasioRB. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics3(4) , 485–492 (2002).
  • van Kuilenburg ABP . Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur. J. Cancer40(7) , 939–950 (2004).
  • van Kuilenburg ABP , HaasjesJ, RichelDJ et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin. Cancer Res. 6(12) , 4705–4712 (2000).
  • Milano GA , EtienneMC, PierrefiteV, Barberi-HeyobM, Deporte-FetyR, RenéeN. Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br. J. Cancer79(3–4) , 627–630 (1999).
  • Ciccolini J , MercierC, EvrardA et al. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther. Drug Monit. 28(5) , 678–685 (2006).
  • Di Paolo A , DanesiR, FalconeA et al. Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann. Oncol. 12(9) , 1301–1306 (2001).
  • Gamelin E , Boisdron-CelleM. Dose monitoring of 5-fluorouracil in patients with colorectal or head and neck cancer – status of the art. Crit Rev. Oncol. Hematol.30(1) , 71–79 (1999).
  • Maring JG , van Kuilenburg ABP, Haasjes J et al. Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br. J. Cancer86(7) , 1028–1033 (2002).
  • Gamelin E , DelvaR, JacobJ et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J. Clin. Oncol. 26(13) , 2099–2105 (2008).
  • Terret C , ErdociainE, GuimbaudR et al. Dose and time dependencies of 5-fluorouracil pharmacokinetics. Clin. Pharmacol. Ther. 68(3) , 270–279 (2000).
  • Collins JM , DedrickRL, KingFG, SpeyerJL, MyersCE. Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitoneal routes. Clin. Pharmacol. Ther.28(2) , 235–246 (1980).
  • Collins JM . Pharmacokinetics of 5-fluorouracil infusions in the rat: comparison with man and other species. Cancer Chemother. Pharmacol.14(2) , 108–111 (1985).
  • Kissel J , BrixG, BellemannME et al. Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res. 57(16) , 3415–3423 (1997).
  • Port RE , SchlemmerHP, BachertP. Pharmacokinetic analysis of sparse in vivo NMR spectroscopy data using relative parameters and the population approach. Eur. J. Clin. Pharmacol.47(2) , 187–193 (1994).
  • Port RE , BachertP, SemmlerW. Kinetic modeling of in vivo – nuclear magnetic resonance spectroscopy data: 5-fluorouracil in liver and liver tumors. Clin. Pharmacol. Ther.49(5) , 497–505 (1991).
  • Sandstrom M , FreijsA, LarssonR et al. Lack of relationship between systemic exposure for the component drug of the fluorouracil, epirubicin, and 4-hydroxycyclophosphamide regimen in breast cancer patients. J. Clin. Oncol. 14(5) , 1581–1588 (1996).
  • Wagner JG , GyvesJW, StetsonPL et al. Steady-state nonlinear pharmacokinetics of 5-fluorouracil during hepatic arterial and intravenous infusions in cancer patients. Cancer Res. 46(3) , 1499–1506 (1986).
  • McDermott BJ , van den Berg HW, Murphy RF. Nonlinear pharmacokinetics for the elimination of 5-fluorouracil after intravenous administration in cancer patients. Cancer Chemother. Pharmacol.9(3) , 173–178 (1982).
  • Chirstophidis N , VajdaFJ, LucasI, DrummerO, MoonWJ, LouisWJ. Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin. Pharmacokinet.3(4) , 330–336 (1978).
  • Woloch C , Di Paolo A, Marouani H et al. Population pharmacokinetic analysis of 5-FU and 5-FDHU in colorectal cancer patients: search for biomarkers associated with gastro-intestinal toxicity. Curr. Top. Med. Chem.12(15) , 1713–1719 (2012).
  • Larsson PA , CarlssonG, GustavssonB, GrafW, GlimeliusB. Different intravenous administration techniques for 5-fluorouracil. Pharmacokinetics and pharmacodynamic effects. Acta Oncol.35(2) , 207–212 (1996).
  • McLeod HL , SluddenJ, HardySC, LockRE, HawksworthGM, CassidyJ. Autoregulation of 5-fluorouracil metabolism. Eur. J. Cancer34(10) , 1623–1627 (1998).
  • Petit E , MilanoG, LeviF, ThyssA, BailleulF, SchneiderM. Circadian rhythm-varying plasma concentration of 5-fluorouracil during a five-day continuous venous infusion at a constant rate in cancer patients. Cancer Res.48(6) , 1676–1679 (1988).
  • Harris BE , SongR, SoongSJ, DiasioRB. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res.50(1) , 197–201 (1990).
  • Metzger G , MassariC, EtienneMC et al. Spontaneous or imposed circadian changes in plasma concentrations of 5-fluorouracil coadministered with folinic acid and oxaliplatin: relationship with mucosal toxicity in patients with cancer. Clin. Pharmacol. Ther. 56(2) , 190–201 (1994).
  • Beumer JH , Boisdron-CelleM, ClarkeW et al. Multicenter evaluation of a novel nanoparticle immunoassay for 5-fluorouracil on the Olympus AU400 analyzer. Ther. Drug Monit. 31(6) , 688–694 (2009).
  • Santini J , MilanoG, ThyssA et al. 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer. Br. J. Cancer 59(2) , 287–290 (1989).
  • Fety R , RollandF, Barberi-HeyobM et al. Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin. Cancer Res. 4(9) , 2039–2045 (1998).
  • Ychou M , DuffourJ, KramarA et al. Individual 5-FU dose adaptation in metastatic colorectal cancer: results of a Phase II study using a bimonthly pharmacokinetically intensified LV5-FU2 regimen. Cancer Chemother. Pharmacol. 52(4) , 282–290 (2003).
  • Bocci G , DanesiR, Di Paolo AD et al. Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5-fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients. Clin. Cancer Res.6(8) , 3032–3037 (2000).
  • Bocci G , BarbaraC, VannozziF et al. A pharmacokinetic-based test to prevent severe 5-fluorouracil toxicity. Clin. Pharmacol. Ther. 80(4) , 384–395 (2006).
  • Di Paolo A , DanesiR, VannozziF et al. Limited sampling model for the analysis of 5-fluorouracil pharmacokinetics in adjuvant chemotherapy for colorectal cancer. Clin. Pharmacol. Ther. 72(6) , 627–637 (2002).
  • Heggie GD , SommadossiJP, CrossDS, HusterWJ, DiasioRB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res.47(8) , 2203–2206 (1987).
  • Naguib FN , el Kouni MH. Enzymes of uracil catabolism in normal and neoplastic human tissues. Cancer Res.45(11 Pt 1) , 5405–5412 (1985).
  • van Kuilenburg ABP , van Lenthe H, Blom MJ, Mul EP, van Gennip AH. Profound variation in dihydropyrimidine dehydrogenase activity in human blood cells: major implications for the detection of partly deficient patients. Br. J. Cancer79(3–4) , 620–626 (1999).
  • Stéphan F , EtienneMC, WallaysC, MilanoGA, ClergueF. Depressed hepatic dihydropyrimidine dehydrogenase activity and fluorouracil-related toxicities. Am. J. Med.99(6) , 685–688 (1995).
  • Diasio RB , BeaversTL, CarpenterJT. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J. Clin. Invest.81(1) , 47–51 (1988).
  • Codacci-Pisanelli G , PinedoHM, LankelmaJ et al. Pharmacokinetics of bolus 5-fluorouracil: relationship between dose, plasma concentrations, area-under-the-curve and toxicity. J. Chemother. 17(3) , 315–320 (2005).
  • van Kuilenburg ABP , MaringJG, SchalhornA et al. Pharmacokinetics of 5-fluorouracil in patients heterozygous for the IVS14+1G>A mutation in the dihydropyrimidine dehydrogenase gene. Nucleosides Nucleotides Nucleic Acids 27 , 692–698 (2008).
  • van Kuilenburg ABP , MeinsmaJR, ZoetekouwL, van Gennip AH. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int. J. Cancer101(3) , 253–258 (2002).
  • Gusella M , FerrazziE, FerrariM, PadriniR. New limited sampling strategy for determining 5-fluorouracil area under the concentration-time curve after rapid intravenous bolus. Ther. Drug Monit.24(3) , 425–431 (2002).
  • Boisdron-Celle M , RemaudG, TraoreS et al. 5-fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett. 249 , 271–282 (2007).
  • Mattison LK , EzzeldinH, CarpenterM, ModakA, JohnsonMR, DiasioRB. Rapid identification of dihydropyrimidine dehydrogenase deficiency by using a novel 2–13C-uracil breath test. Clin. Cancer Res.10(8) , 2652–2658 (2004).
  • van Kuilenburg ABP . Screening for dihydropyrimidine dehydrogenase deficiency: to do or not to do, that‘s the question. Cancer Invest.24(2) , 215–217 (2006).
  • Ciccolini J , GrossE, DahanL, LacarelleB, MercierC. Routine dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil-related severe toxicities: hype or hope? Clin. Colorectal Cancer9(4) , 224–228 (2010).
  • van Staveren MC , Theeuwes-OonkB, GuchelaarHJ, van Kuilenburg AB, Maring JG. Pharmacokinetics of orally administered uracil in healthy volunteers and in DPD-deficient patients, a possible tool for screening of DPD deficiency. Cancer Chemother. Pharmacol.68(6) , 1611–1617 (2011).
  • van Kuilenburg ABP , VrekenP, AbelingNG et al. Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Hum. Genet. 104(1) , 1–9 (1999).
  • Amstutz U , FroehlichTK, LargiaderCR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics12(9) , 1321–1336 (2011).
  • Morel A , Boisdron-CelleM, FeyL et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol. Cancer Ther. 5(11) , 2895–2904 (2006).
  • Schwab M , ZangerUM, MarxC et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU toxicity study group. J. Clin. Oncol. 26 , 2131–2138 (2008).
  • Deenen MJ , TolJ, BuryloAM et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res. 17(10) , 3455–3468 (2011).
  • Collie-Duguid ESR , EtienneMC, MilanoGA, McLeodHL. Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics10(3) , 217–223 (2000).
  • van Kuilenburg ABP , MeijerJ, MulAN et al. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum. Genet. 128(5) , 529–538 (2010).
  • Gieschke R , BurgerHU, ReignerB, BleschKS, SteimerJL. Population pharmacokinetics and concentration–effect relationships of capecitabine metabolites in colorectal cancer patients. Br. J. Clin. Pharmacol.55(3) , 252–263 (2003).
  • Gieschke R , ReignerB, BleschKS, SteimerJL. Population pharmacokinetic analysis of the major metabolites of capecitabine. J. Pharmacokinet. Pharmacodyn.29(1) , 25–47 (2002).
  • Daniele G , GalloM, PiccirilloMC et al. Pharmacokinetic evaluation of capecitabine in breast cancer. Expert Opin. Drug Metab. Toxicol. 9(2) , 225–235 (2013).
  • Chachad S , PurandareS, MalhotraG, NaiduR. Comparison of pharmacokinetics and safety profiles of two capecitabine tablet formulations in patients with colon, colorectal or breast cancer. Cancer Chemother. Pharmacol.71(2) , 287–292 (2013).
  • Coustere C , MentreF, SommadossiJP, DiasioRB, SteimerJL. A mathematical model of the kinetics of 5-fluorouracil and its metabolites in cancer patients. Cancer Chemother. Pharmacol.28(2) , 123–129 (1991).
  • Moore MJ , BuntingP, YuanS, ThiessenJJ. Development and validation of a limited sampling strategy for 5-fluorouracil given by bolus intravenous administration. Ther. Drug Monit.15(5) , 394–399 (1993).
  • Bressolle F , JouliaJM, PinguetF et al. Circadian rhythm of 5-fluorouracil population pharmacokinetics in patients with metastatic colorectal cancer. Cancer Chemother. Pharmacol. 44(4) , 295–302 (1999).
  • Climente-Marti M , Merino-SanjuanM, Almenar-CubellsD, Jimenez-TorresNV. A Bayesian method for predicting 5-fluorouracil pharmacokinetic parameters following short-term infusion in patients with colorectal cancer. J. Pharm. Sci.92(6) , 1155–1165 (2003).
  • Maring JG , PiersmaH, van Dalen A, Groen HJ, Uges DR, de Vries EG. Extensive hepatic replacement due to liver metastases has no effect on 5-fluorouracil pharmacokinetics. Cancer Chemother. Pharmacol.51(2) , 167–173 (2003).
  • Ibrahim T , Di Paolo A, Amatori F et al. Time-dependent pharmacokinetics of 5-fluorouracil and association with treatment tolerability in the adjuvant setting of colorectal cancer. J. Clin. Pharmacol.52 , 361–369 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.