587
Views
0
CrossRef citations to date
0
Altmetric
Review

SGLT2: A Potential Target for the Pharmacogenetics of Type 2 Diabetes?

&
Pages 825-833 | Published online: 08 May 2013

References

  • Shields BM , HicksS, ShepherdMH, ColcloughK, HattersleyAT, EllardS. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia53 , 2504–2508 (2010).
  • Gloyn AL . Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum. Mut.22 , 353–362 (2003).
  • Gloyn AL , EllardS. Defining the genetic aetiology monogenic diabetes can improve treatment. Expert Opin. Pharmacother.7 , 1759–1767 (2006).
  • Fajans SS , BellGI, PolonskyKS. Mechanisms of disease: molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med.345 , 971–980 (2001).
  • Gloyn AL , PearsonER, AntcliffJF et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350 , 1838–1849 (2004).
  • Hattersley AT , AshcroftFM. Activating mutations in Kir6.2 and neonatal diabetes – new clinical syndromes, new scientific insights, and new therapy. Diabetes54 , 2503–2513 (2005).
  • Flanagan SE , PatchAM, MackayDJG et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56 , 1930–1937 (2007).
  • Pearson ER , FlechtnerI, NjolstadPR et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 355 , 467–477 (2006).
  • Smith RJ , NathanDM, ArslanianSA, GroopL, RizzaRA, RotterJI. Individualizing therapies in Type 2 diabetes mellitus based on patient characteristics: what we know and what we need to know. J. Clin. Endocrinol. Metab.95 , 1566–1574 (2010).
  • Altshuler D , HirschhornJN, KlannemarkM et al. The common PPAR β Pro12Ala polymorphism is associated with decreased risk of Type 2 diabetes. Nat. Genet. 26 , 76–80 (2000).
  • O‘Rahilly S , BarrosoI, WarehamNJ. Genetic factors in Type 2 diabetes: the end of the beginning? Science307 , 370–373 (2005).
  • Grant SF , ThorleifssonG, ReynisdottirI et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes. Nat. Genet. 38 , 320–323 (2006).
  • Clatworthy JP , SubramanianV. Stem cells and the regulation of proliferation, differentiation and patterning in the intestinal epithelium: emerging insights from gene expression patterns, transgenic and gene ablation studies. Mech. Dev.101 , 3–9 (2001).
  • Cauchi S , MeyreD, DinaC et al. Transcription factor TCF7L2 genetic study in the French population – expression in human β-cells and adipose tissue and strong association with Type 2 diabetes. Diabetes 55 , 2903–2908 (2006).
  • Cauchi S , ElAchhabY, ChoquetH et al. TCF7L2 is reproducibly associated with Type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med. 85 , 777–782 (2007).
  • Damcott CM , PollinTI, ReinhartLJ et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with Type 2 diabetes in the Amish – replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 55 , 2654–2659 (2006).
  • Florez JC , JablonskiKA, BayleyN et al. TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N. Engl. J. Med.355 , 241–250 (2006).
  • Grant SFA , ThorleifssonG, HelgasonA et al. Refinement of the association between the TCF7L2 gene and Type 2 diabetes in a west African population. Diabetologia 49 , 16–17 (2006).
  • Groves CJ , ZegginiE, MintonJ et al. Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a Type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes 55 , 2640–2644 (2006).
  • Helgason A , PalssonS, ThorleifssonG et al. Refining the impact of TCF7L2 gene variants on Type 2 diabetes and adaptive evolution. Nat. Genet. 39 , 218–225 (2007).
  • Kimber CH , DoneyAS, PearsonER et al. TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia50 , 1186–1191 (2007).
  • Scott LJ , BonnycastleLL, WillerCJ et al. Association of transcription factor 7-like 2 (TCF7L2) variants with Type 2 diabetes in a Finnish sample. Diabetes 55 , 2649–2653 (2006).
  • Wang J , KuusistoJ, VanttinenM et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to Type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 50 , 1192–1200 (2007).
  • Zeggini E , McCarthyMI. TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia50 , 1–4 (2007).
  • Zhang C , QiL, HunterDJ et al. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of Type 2 diabetes in large cohorts of U.S. women and men. Diabetes 55 , 2645–2648 (2006).
  • Pearson ER , DonnellyLA, KimberC et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas – a GoDARTs study. Diabetes 56 , 2178–2182 (2007).
  • Holstein A , HahnM, KornerA, StumvollM, KovacsP. TCF7L2 and therapeutic response to sulfonylureas in patients with Type 2 diabetes. BMC Med. Genet.12 , 30 (2011).
  • Zhou K , BellenguezC, SpencerCC et al. Common variants near ATM are associated with glycemic response to metformin in Type 2 diabetes. Nat. Genet. 43 , 117–120 (2011).
  • van Leeuwen N , NijpelsG, BeckerML et al. A gene variant near ATM is significantly associated with metformin treatment response in Type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia 55 , 1971–1977 (2012).
  • Nair S , WildingJPH. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab.95 , 34–42 (2010).
  • Lee YJ , LeeYJ, HanHJ. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int.72 , S27–S35 (2007).
  • Abdul-Ghani MA , DefronzoRA. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in Type 2 diabetes mellitus. Endocr. Pract.14 , 782–790 (2008).
  • Wright E , TurkE. The sodium/glucose cotransport family SLC5. Pflugers Arch. Eur. J. Physiol.447 , 510–518 (2004).
  • Wright EM . Renal Na+-glucose cotransporters. Am. J. Physiol. Renal Physiol.280 , F10–F18 (2001).
  • Powell DR , DaCostaCM, GayJ et al. Improved glycemic control in mice lacking Sglt1 and Sglt2. Am. J. Physiol. Endocrinol. Metabol. 304(2) , E117–E130 (2012).
  • Kamran M , PetersonRG, DominguezJH. Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats. J. Am. Soc. Nephrol.8 , 943–948 (1997).
  • Marks J , CarvouNJC, DebnamES, SraiSK, UnwinRJ. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J. Physiol.553 , 137–145 (2003).
  • Noonan WT , ShapiroVM, BanksRO. Renal glucose reabsorption during hypertonic glucose infusion in female streptozotocin-induced diabetic rats. Life Sci.68 , 2967–2977 (2001).
  • Freitas HS , AnheGF, MeloKFS et al. Na+-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1α expression and activity. Endocrinology 149 , 717–724 (2008).
  • Rahmoune H , ThompsonPW, WardJM, SmithCD, HongG, BrownJ. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes54 , 3427–3434 (2005).
  • Pontoglio M , SreenanS, RoeM et al. Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J. Clin. Invest. 101 , 2215–2222 (1998).
  • Pontoglio M , PrieD, CheretC et al. HNF1 α controls renal glucose reabsorption in mouse and man. EMBO Rep. 1 , 359–365 (2000).
  • Pontoglio M , BarraJ, HadchouelM et al. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal fanconi syndrome. Cell 84 , 575–585 (1996).
  • Menzel R , KaisakiPJ, RjasanowskiI, HeinkeP, KernerW, MenzelS. A low renal threshold for glucose in diabetic patients with a mutation in the hepatocyte nuclear factor-1α (HNF-1α) gene. Diab. Med.15 , 816–820 (1998).
  • Schiffer M , SusztakK, RanallettaM, RaffAC, BöttingerEP, CharronMJ. Localization of the GLUT8 glucose transporter in murine kidney and regulation in vivo in nondiabetic and diabetic conditions. Am. J. Physiol. Renal Physiol.289 , F186–F193 (2005).
  • Doege H , SchürmannA, BahrenbergG, BrauersA, JoostHG. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J. Biol. Chem.275 , 16275–16280 (2000).
  • Gorboulev V , SchürmannA, VallonV et al. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61 , 187–196 (2012).
  • Calado J , LoefflerJ, SakalliogluO et al. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting. Kidney Int. 69 , 852–855 (2006).
  • Calado J , SznajerY, MetzgerD et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol. Dial. Transplant. 23 , 3874–3879 (2008).
  • Santer R , KinnerM, LassenCL et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J. Am. Soc. Nephrol. 14 , 2873–2882 (2003).
  • Yu L , LvJC, ZhouXJ, ZhuL, HouP, ZhangH. Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients. Hum. Genet.129 , 335–344 (2011).
  • Santer R , CaladoJ. Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol.5 , 133–141 (2010).
  • Katsuno K , FujimoriY, TakemuraY et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J. Pharmacol. Exp. Ther. 320 , 323–330 (2007).
  • Fujimori Y , KatsunoK, OjimaK et al. Sergliflozin etabonate, a selective SGLT2 inhibitor, improves glycemic control in streptozotocin-induced diabetic rats and Zucker fatty rats. Eur. J. Pharmacol. 609 , 148–154 (2009).
  • MacDonald FR , PeelJE, JonesHB et al. The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats. Diabetes Obes. Metab. 12 , 1004–1012 (2010).
  • Han S , HaganDL, TaylorJR et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57 , 1723–1729 (2008).
  • Jurczak MJ , LeeHY, BirkenfeldAL et al. SGLT2 deletion improves glucose homeostasis and preserves pancreatic β-cell function. Diabetes 60 , 890–898 (2011).
  • Komoroski B , VachharajaniN, FengY, LiL, KornhauserD, PfisterM. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with Type 2 diabetes mellitus. Clin. Pharmacol. Ther.85 , 513–519 (2009).
  • Bailey CJ , GrossJL, PietersA, BastienA, ListJF. Effect of dapagliflozin in patients with Type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet375 , 2223–2233 (2010).
  • Wilding JPH , WooV, SolerNG et al. Long-term efficacy of dapagliflozin in patients with Type 2 diabetes mellitus receiving high doses of insulin a randomized trial. Ann. Int. Med. 156 , 405–415 (2012).
  • Ehrenkranz JRL , LewisNG, KahnRC, RothJ. Phlorizin: a review. Diabetes Metab. Res. Rev.21 , 31–38 (2005).
  • Grempler R , ThomasL, EckhardtM et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes. Metab. 14 , 83–90 (2012).
  • Chen LH , LeungPS. Inhibition of the sodium glucose co-transporter-2: its beneficial action and potential combination therapy for Type 2 diabetes mellitus. Diabetes Obes. Metab.15(5) , 392–402 (2013).
  • Jones D . Diabetes field cautiously upbeat despite possible setback for leading SGLT2 inhibitor. Nat. Rev. Drug Discov.10 , 645–646 (2011).
  • Sheridan C . SGLT2 inhibitors race to enter Type-2 diabetes market. Nat. Biotech.30 , 899–900 (2012).
  • Ferrannini E , RamosSJ, SalsaliA, TangW, ListJF. Dapagliflozin monotherapy in Type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, Phase 3 trial. Diabetes Care33 , 2217–2224 (2010).
  • Hussey EK , ClarkRV, AminDM et al. Single-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy volunteers and patients with Type 2 diabetes mellitus. J. Clin. Pharmacol. 50 , 623–635 (2010).
  • Wilding JPH , NorwoodP, T‘joenC, BastienA, ListJF, FiedorekFT. A study of dapagliflozin in patients with Type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care32 , 1656–1662 (2009).
  • Rosenstock J , VicoM, WeiL, SalsaliA, ListJF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA1c, body weight, and hypoglycemia risk in patients with Type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care35 , 1473–1478 (2012).
  • Musso G , GambinoR, CassaderM, PaganoG. A novel approach to control hyperglycemia in Type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann. Med.44 , 375–393 (2012).
  • Liu J , LeeT, DeFronzoRA. Why do SGLT2 inhibitors inhibit only 30–50% of renal glucose reabsorption in humans? Diabetes61 , 2199–2204 (2012).
  • Ferrannini E , SoliniA. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat. Rev. Endocrinol.8 , 495–502 (2012).
  • Nauck MA , Del Prato S, Meier JJ et al. Dapagliflozin versus glipizide as add-on therapy in patients with Type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care34 , 2015–2022 (2011).
  • Zanardi TA , HanSC, JeongEJ et al. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2. J. Pharmacol. Exp. Ther. 343 , 489–496 (2012).
  • Zambrowicz B , FreimanJ, BrownPM et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with Type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther. 92 , 158–169 (2012).
  • Zambrowicz B , DingZM, OgbaaI et al. Effects of LX4211, a dual SGLT1/SGLT2 inhibitor, plus sitagliptin on postprandial active GLP-1 and glycemic control in Type 2 diabetes. Clin. Ther. 35(3) , 273–285.e7 (2013).
  • List JF , WooV, MoralesE, TangW, FiedorekFT. Sodium-glucose cotransport inhibition with dapagliflozin in Type 2 diabetes. Diabetes Care32 , 650–657 (2009).
  • Zhang L , FengY, ListJ, KasichayanulaS, PfisterM. Dapagliflozin treatment in patients with different stages of Type 2 diabetes mellitus: effects on glycaemic control and body weight. Diabetes Obes. Metab.12 , 510–516 (2010).
  • Enigk U , BreitfeldJ, SchleinitzD et al. Role of genetic variation in the human sodium-glucose cotransporter 2 gene (SGLT2) in glucose homeostasis. Pharmacogenomics 12 , 1119–1126 (2011).
  • Wheeler E , BarrosoI. Genome-wide association studies and Type 2 diabetes. Brief Funct. Genomics10 , 52–60 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.