414
Views
0
CrossRef citations to date
0
Altmetric
Review

Genes and Beans: Pharmacogenomics of Renal Transplant

, , , &
Pages 769-781 | Published online: 08 May 2013

References

  • De Jonge H , KuypersDR. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant. Rev. (Orlando)22(1) , 6–20 (2008).
  • Sayegh MH , CarpenterCB. Transplantation 50 years later – progress, challenges, and promises. N. Engl. J. Med.351(26) , 2761–2766 (2004).
  • Halloran PF . Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med.351(26) , 2715–2729 (2004).
  • Clase CM , MahalatiK, KiberdBA et al. Adequate early cyclosporin exposure is critical to prevent renal allograft rejection: patients monitored by absorption profiling. Am. J. Transplant. 2(8) , 789–795 (2002).
  • Undre NA , van Hooff J, Christiaans M et al. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant. Proc.31(1–2) , 296–298 (1999).
  • Nankivell BJ , BorrowsRJ, FungCL, O‘ConnellPJ, AllenRD, ChapmanJR. The natural history of chronic allograft nephropathy. N. Engl. J. Med.349(24) , 2326–2333 (2003).
  • Davidson JA , WilkinsonA. New-onset diabetes after transplantation 2003 International Consensus Guidelines: an endocrinologist‘s view. Diabetes Care27(3) , 805–812 (2004).
  • De Jonge H , NaesensM, KuypersDR. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther. Drug Monit.31(4) , 416–435 (2009).
  • Holt DW . Therapeutic drug monitoring of immunosuppressive drugs in kidney transplantation. Curr. Opin. Nephrol. Hypertens.11(6) , 657–663 (2002).
  • Kahan BD , NapoliKL, PodbielskiJ, HusseinI, KatzSH, Van Buren CT. Therapeutic drug monitoring of sirolimus for optimal renal transplant outcomes. Transplant. Proc.33(1–2) , 1278 (2001).
  • Ekbal NJ , HoltDW, MacPheeIA. Pharmacogenetics of immunosuppressive drugs: prospect of individual therapy for transplant patients. Pharmacogenomics9(5) , 585–596 (2008).
  • Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant.9(Suppl. 3) , S1–S157 (2009).
  • Costanzo MR , DipchandA, StarlingR et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 29(8) , 914–956 (2010).
  • Webster AC , WoodroffeRC, TaylorRS, ChapmanJR, CraigJC. Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. BMJ331(7520) , 810 (2005).
  • Kobashigawa JA , MeiserBM. Review of major clinical trials with mycophenolate mofetil in cardiac transplantation. Transplantation80(Suppl. 2) , S235–S243 (2005).
  • Knight SR , RussellNK, BarcenaL, MorrisPJ. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation87(6) , 785–794 (2009).
  • Speich R , SchneiderS, HoferM et al. Mycophenolate mofetil reduces alveolar inflammation, acute rejection and graft loss due to bronchiolitis obliterans syndrome after lung transplantation. Pulm. Pharmacol. Ther. 23(5) , 445–449 (2010).
  • Meier-Kriesche HU , SteffenBJ, HochbergAM et al. Long-term use of mycophenolate mofetil is associated with a reduction in the incidence and risk of late rejection. Am. J. Transplant. 3(1) , 68–73 (2003).
  • Germani G , PleguezueloM, VillamilF et al. Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am. J. Transplant. 9(8) , 1725–1731 (2009).
  • Remuzzi G , LestiM, GottiE et al. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet 364(9433) , 503–512 (2004).
  • Remuzzi G , CravediP, ConstantiniM et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J. Am. Soc. Nephrol. 18(6) , 1973–1985 (2007).
  • Clayton PA , McDonaldSP, ChapmanJR, ChadbanSJ. Mycophenolate versus azathioprine for kidney transplantation: a 15-year follow-up of a randomized trial. Transplantation94(2) , 152–158 (2012).
  • Coto E , TaviraB. Pharmacogenetics of calcineurin inhibitors in renal transplantation. Transplantation88(Suppl. 3) , S62–S67 (2009).
  • Utecht KN , HilesJJ, KolesarJ. Effects of genetic polymorphisms on the pharmacokinetics of calcineurin inhibitors. Am. J. Health Syst. Pharm.63(23) , 2340–2348 (2006).
  • Staatz CE , GoodmanLK, TettSE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin. Pharmacokinet.49(3) , 141–175 (2010).
  • Iwasaki K . Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab. Pharmacokinet.22(5) , 328–335 (2007).
  • Barry A , LevineM. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients. Ther. Drug Monit.32(6) , 708–714 (2010).
  • MacPhee IA , FredericksS, TaiT et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 74(11) , 1486–1489 (2002).
  • MacPhee IA , FredericksS, TaiT et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Tranpslant. 4(6) , 914–919 (2004).
  • Hesselink DA , van Schaik R, van der Heiden IP et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther.74(3) , 245–254 (2003).
  • Thervet E , AnglicheauD, KingB et al. Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 76(8) , 1233–1235 (2003).
  • Kuypers DR , de Jonge H, Naesens M et al.CYP3A5 and CYP3A4 but not MDR-1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin. Pharmacol. Ther.82(6) , 711–725 (2007).
  • Tavira B , CotoE, Diaz-CorteC et al. Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clin. Chem. Lab. Med. 49(5) , 825–833 (2011).
  • Jacobson PA , OettingWW, BrearleyAM et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 91(3) , 300–308 (2011).
  • Santoro A , FelipeCR, Tedesco-SilvaH et al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics 12(9) , 1293–1303 (2011).
  • Hesselink DA , van Schaik RH, van Agteren M et al.CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenet. Genomics18(4) , 339–348 (2008).
  • Ferraresso M , TuroloS, GhioL et al. Association between CYP3A5 polymorphisms and blood pressure in kidney transplant recipients receiving calcineurin inhibitors. Clin. Exp. Hypertens. 33(6) , 359–365 (2011).
  • Zheng S , TasnifY, HebertMF et al. Measurement and compartmental modeling of the effect of CYP3A5 gene variation on systemic and intrarenal tacrolimus disposition. Clin. Pharmacol. Ther. 92(6) , 737–745 (2012).
  • Wang P , MaoY, RazoJ et al. Using genetic and clinical factors to predict tacrolimus dose in renal transplant recipients. Pharmacogenomics 11(10) , 1389–1402 (2010).
  • Passey C , BirnbaumAK, BrundageRC, OettingWS, IsraniAK, JacobsonPA. Dosing equation for tacrolimus using genetic variants and clinical factors. Br. J. Clin. Pharmacol.72(6) , 948–957 (2011).
  • Thervet E , LoriotMA, BarbierS et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 87(6) , 721–726 (2010).
  • Miura M , SatohS, KagayaH et al. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 12(7) , 977–984 (2011).
  • Elens L , van Schaik RH, Panin N et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors‘ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics12(10) , 1383–1396 (2011).
  • Elens L , van Gelder T, Hesselink DA, Haufroid V, van Schaik RH. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics14(1) , 47–62 (2013).
  • Laverdiere I , CaronP, HarveyM, LevesqueE, GuillemetteC. In vitro investigation of human UDP-glucuronosyltransferase isoforms responsible for tacrolimus glucuronidation: predominant contribution of UGT1A4. Drug Metab. Dispos.39(7) , 1127–1130 (2011).
  • De Jonge H , MetalidisC, NaesensM, LambrechtsD, KuypersDR. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics12(9) , 1281–1291 (2011).
  • Benkali K , PremaudA, PicardN et al. Tacrolimus population pharmacokinetic–pharmacogenetic analysis and Bayesian estimation in renal transplant recipients. Clin. Pharmacokinet. 48(12) , 805–816 (2009).
  • Barraclough KA , IsbelNM, LeeKJ et al. NR112 polymorphisms are related to tacrolimus dose-adjusted exposure and BK viremia in adult kidney transplantation. Transplantation94(10) , 1025–1032 (2012).
  • Moore J , McKnightAJ, DohlerB et al. Donor ABCB1 variant associates with increased risk for kidney allograft failure. J. Am. Soc. Nephrol. 23(11) , 1891–1899 (2012).
  • Klein K , ThomasM, WinterS et al. PPARA: a novel genetic determinant of CYP3A4in vitro and in vivo. Clin. Pharmacol. Ther. 91(6) , 1044–1052 (2012).
  • Herrero MJ , Sanchez-PlumedJ, GalianaM, BeaS, MarquesMR, AlinoSF. Influence of pharmacogenetic polymorphisms in routine immunosuppression therapy after renal transplantation. Transplant. Proc.42(8) , 3134–3136 (2010).
  • Lopez-Montenegro Soria MA , Kanter Berga J, Beltran Catalan S, Milara Paya J, Pallardo Mateu LM, Jimenez Torres NV. Genetic polymorphisms and individualized tacrolimus dosing. Transplant. Proc.42(8) , 3031–3033 (2010).
  • Capron A , MouradM, De Meyer M et al.CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics11(5) , 703–714 (2010).
  • Wu P , NiX, WangM, XuX, LuoG, JiangY. Polymorphisms in CYP3A5*3 and MDR1, and haplotype modulate response to plasma levels of tacrolimus in Chinese renal transplant patients. Ann. Transplant.16(1) , 54–60 (2011).
  • Rong G , JingL, Deng-QingL, Hong-ShanZ, Shai-HongZ, Xin-MinN. Influence of CYP3A5 and MDR1(ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Transplant. Proc.42(9) , 3455–3458 (2010).
  • Zheng HX , ZeeviA, McCurryK et al. The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transpl. Immunol. 14(1) , 37–42 (2005).
  • Barnard JB , RichardsonS, SheldonS et al. The MDR1/ABCB1 gene, a high-impact risk factor for cardiac transplant rejection. Transplantation 82(12) , 1677–1682 (2006).
  • Bandur S , PetrasekJ, HribovaP, NovotnaE, BrabcovaI, ViklickyO. Haplotypic structure of ABCB1/MDR1 gene modifies the risk of the acute allograft rejection in renal transplant recipients. Transplantation86(9) , 1206–1213 (2008).
  • Grinyo J , VanrenterghemY, NashanB et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transplant. Int. 21(9) , 879–891 (2008).
  • Hawwa AF , McKiernanPJ, ShieldsM, MillershipJS, CollierPS, McelnayJC. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br. J. Clin. Pharmacol.68(3) , 413–421 (2009).
  • Naesens M , LerutE, de Jonge H et al. Donor age and renal P-glycoprotein expression associate with chronic histologic damage in renal allografts. J. Am. Soc. Nephrol.20(11) , 2468–2480 (2009).
  • Yamauchi A , IeiriI, KataokaY et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation 74(4) , 571–572 (2002).
  • Hesselink DA , BouamarR, van Gelder T. The pharmacogenetics of calcineurin inhibitor-related nephrotoxicity. Ther. Drug Monit.32(4) , 387–393 (2010).
  • Shuker N , BouamarR, WeimarW, van Schaik RH, van Gelder T, Hesselink DA. ATP-binding cassette transporters as pharmacogenetic biomarkers for kidney transplantation. Clin. Chim. Acta413(17–18) , 1326–1337 (2012).
  • Tavira B , CotoE, TorresA et al. Association between a common KCNJ11 polymorphism (rs5219) and new-onset posttransplant diabetes in patients treated with tacrolimus. Mol. Genet. Metab. 105(3) , 525–527 (2012).
  • Tavira B , CotoE, Diaz-CorteC et al. KCNQ1 gene variants and risk of new-onset diabetes in tacrolimus-treated renal-transplanted patients. Clin. Transplant.25(3) , E284–E291 (2011).
  • Eng HS , MohamedZ, CalneR et al. The influence of CYP3A gene polymorphisms on cyclosporine dose requirement in renal allograft recipients. Kidney Int. 69(10) , 1858–1864 (2006).
  • Haufroid V , MouradM, Van Kerckhove V et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics14(3) , 147–154 (2004).
  • Hu YF , QiuW, LiuZQ et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin. Exp. Pharmacol. Physiol. 33(11) , 1093–1098 (2006).
  • Kreutz R , ZurcherH, KainS, MartusP, OffermannG, BeigeJ. The effect of variable CYP3A5 expression on cyclosporine dosing, blood pressure and long-term graft survival in renal transplant patients. Pharmacogenetics14(10) , 665–671 (2004).
  • Zhao Y , SongM, GuanD et al. Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplant. Proc. 37(1) , 178–181 (2005).
  • Hu YF , TuJH, TanZR et al. Association of CYP3A4*18B polymorphisms with the pharmacokinetics of cyclosporine in healthy subjects. Xenobiotica 37(3) , 315–327 (2007).
  • Chowbay B , CumaraswamyS, CheungYB, ZhouQ, LeeEJ. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics13(2) , 89–95 (2003).
  • Ozdemir V , KalowW, TangBK et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10(5) , 373–388 (2000).
  • von Ahsen N , RichterM, GruppC, RingeB, OellerichM, ArmstrongVW. No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem.47(6) , 1048–1052 (2001).
  • Elens L , BouamarR, HesselinkDA, HaufroidV, van Gelder T, van Schaik RH. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet. Genomics22(5) , 373–380 (2012).
  • Moscoso-Soloranzo GT , OrtegaF, RodriguezI et al. A search for cyclophilin-A gene variants in cyclosporine A-treated renal transplanted patients. Clin. Transplant. 22(6) , 722–729 (2008).
  • Press RR , PloegerBA, den Hartigh J et al. Explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur. J. Clin. Pharmacol.66(6) , 579–590 (2010).
  • Hesselink DA , van Gelder T, van Schaik RH et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clin. Pharmacol. Ther.76(6) , 545–556 (2004).
  • Singh R , SrivastavaA, KapoorR, K Sharma R, D Mittal R. Impact of CYP3A5 and CYP3A4 gene polymorphisms on dose requirement of calcineurin inhibitors, cyclosporine and tacrolimus, in renal allograft recipients of North India. Naunyn Schmiedebergs Arch. Pharmacol.380(2) , 169–177 (2009).
  • Singh R , KesarwaniP, SrivastavaA, MittalRD. ABCB1 G2677 allele is associated with high dose requirement of cyclosporin A to prevent renal allograft rejection in North India. Arch. Med. Res.39(7) , 695–701 (2008).
  • Foote CJ , GreerW, KiberdB et al. Polymorphisms of multidrug resistance gene (MDR1) and cyclosporine absorption in de novo renal transplant patients. Transplantation 83(10) , 1380–1384 (2007).
  • Azarpira N , AghdaieMH, Behzad-BehbahanieA et al. Association between cyclosporine concentration and genetic polymorphisms of CYP3A5 and MDR1 during the early stage after renal transplantation. Exp. Clin. Transplant. 4(1) , 416–419 (2006).
  • Yates CR , ZhangW, SongP et al. The effect of CYP3A5 and MDR1 polymorphic expression on cyclosporine oral disposition in renal transplant patients. J. Clin. Pharmacol. 43(6) , 555–564 (2003).
  • Hebert MF , DowlingAL, GierwatowskiC et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics 13(11) , 661–674 (2003).
  • Cattaneo D , RuggenentiP, BaldelliS et al. ABCB1 genotypes predict cyclosporine-related adverse events and kidney allograft outcome. J. Am. Soc. Nephrol.20(6) , 1404–1415 (2009).
  • Woillard JB , RerolleJP, PicardN et al. Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up. Clin. Pharmacol. Ther. 88(1) , 95–100 (2010).
  • Hauser IA , SchaeffelerE, GauerS et al. ABCB1 genotype of the donor but not the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J. Am. Soc. Nephrol.16(5) , 1501–1511 (2005).
  • Hauser IA , KruckS, GauerS et al. Human pregnane x receptor genotype of the donor but not of the recipient is a risk factor for delayed graft function after renal transplantation. Clin. Pharmacol. Ther. 91(5) , 905–916 (2012).
  • Webster AC , LeeVW, ChapmanJR, CraigJC. Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials. Transplantation81(9) , 1234–1248 (2006).
  • Saunders RN , MetcalfeMS, NicholsonML. Rapamycin in transplantation: a review of the evidence. Kidney Int.59(1) , 3–16 (2001).
  • Gabardi S , BarolettiSA. Everolimus: a proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology. Pharmacotherapy30(10) , 1044–1056 (2010).
  • Ingle GR , SieversTM, HoltCD. Sirolimus: continuing the evolution of transplant immunosuppression. Ann. Pharmacother.34(9) , 1044–1055 (2000).
  • Djebli N , RousseauA, RerolleJP et al. Sirolimus population pharmacokinetic/pharmacogenetic analysis and Bayesian modeling in kidney transplant recipients. Clin. Pharmacokinet. 45(11) , 1135–1148 (2006).
  • Le Meur Y , DjebliN, SzelagJC et al. CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin. Pharmacol. Ther.80(1) , 51–60 (2006).
  • Kniepeiss D , RennerW, TrummerO et al. The role of CYP3A5 genotypes in dose requirements of tacrolimus and everolimus after heart transplantation. Clin. Transplant. 25(1) , 146–150 (2011).
  • Lennard L . The clinical pharmacology of 6-mercaptopurine. Eur. J. Clin. Pharmacol.43(4) , 329–339 (1992).
  • Aarbakke J , Janka-SchaubG, ElionGB. Thiopurine biology and pharmacology. Trends Pharmacol. Sci.18(1) , 3–7 (1997).
  • Thomas CW , MyhreGM, TschumperR et al. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J. Pharmacol. Exp. Ther. 312(2) , 537–545 (2005).
  • Tiede I , FritzG, StrandS et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J. Clin. Invest. 111(8) , 1133–1145 (2003).
  • Ford LT , BergJD. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J. Clin. Pathol.63(4) , 288–295 (2010).
  • Van Os EC , ZinsBJ, SandbornWJ et al. Azathioprine pharmacokinetics after intravenous, oral, delayed release oral and rectal foam administration. Gut 39(1) , 63–68 (1996).
  • Odlind B , HartvigP, LindstromB, LonnerholmG, TufvesonG, GrefbergN. Serum azathioprine and 6-mercaptopurine levels and immunosuppressive activity after azathioprine in uremic patients. Int. J. Immunopharmacol.8(1) , 1–11 (1986).
  • Chan GL , ErdmannGR, GruberSA, MatasAJ, CanafaxDM. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J. Clin. Pharmacol.30(4) , 358–363 (1990).
  • Romagnuolo J , SadowskiDC, LalorE, JewellL, ThomsonAB. Cholestatic hepatocellular injury with azathioprine: a case report and review of the mechanisms of hepatotoxicity. Can. J. Gastroenterol.12(7) , 479–483 (1998).
  • Singh G , FriesJF, SpitzP et al. Toxic effects of azathioprine in rheumatoid arthritis. A national post-marketing perspective. Arthritis Rheum. 32(7) , 837–843 (1989).
  • Relling MV , GardnerEE, SandbornWJ et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89(3) , 387–391 (2011).
  • Higgs JE , PayneK, RobertsC, NewmanWG. Are patients with intermediate TPMT activity at increased risk of myelosuppression when taking thiopurine medications? Pharmacogenomics11(2) , 177–188 (2010).
  • Reuther LO , VainerB, SonneJ, LarsenNE. Thiopurine methyltransferase (TPMT) genotype distribution in azathioprine-tolerant and -intolerant patients with various disorders. The impact of TPMT genotyping in predicting toxicity. Eur. J. Clin. Pharmacol.59(11) , 797–801 (2004).
  • Pandya B , ThomsonW, PoultonK, BruceI, PayneD, QasimF. Azathioprine toxicity and thiopurine methyltransferase genotype in renal transplant patients. Transplant. Proc.34(5) , 1642–1645 (2002).
  • Fabre MA , JonesDC, BunceM et al. The impact of thiopurine S-methyltransferase polymorphisms on azathioprine dose 1 year after renal transplantation. Transpl. Int. 17(9) , 531–539 (2004).
  • Chocair PR , DuleyJA, SimmondsHA, CameronJS. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation53(5) , 1051–1056 (1992).
  • Formea CM , Myers-HuentelmanH, WuR et al. Thiopurine S-methyltransferase genotype predicts azathioprine-induced myelotoxicity in kidney transplant recipients. Am. J. Transplant. 4(11) , 1810–1817 (2004).
  • Song DK , ZhaoJ, ZhangLR. TPMT genotype and its clinical implication in renal transplant recipients with azathioprine treatment. J. Clin. Pharm. Ther.31(6) , 627–635 (2006).
  • Sebbag L , BoucherP, DaveluP et al. Thiopurine S-methyltransferase gene polymorphism is predictive of azathioprine-induced myelosuppression in heart transplant recipients. Transplantation 69(7) , 1524–1527 (2000).
  • Heckmann JM , LambsonEM, LittleF, OwenEP. Thiopurine methyltransferase (TPMT) heterozygosity and enzyme activity as predictive tests for the development of azathioprine-related adverse events. J. Neurol. Sci.231(1–2) , 71–80 (2005).
  • Dervieux T , MedardY, BaudouinV et al. Thiopurine methyltransferase activity and its relationship to the occurrence of rejection episodes in paediatric renal transplant recipients treated with azathioprine. Br. J. Clin. Pharmacol. 48(6) , 793–800 (1999).
  • Thervet E , AnglicheauD, ToledanoN et al. Long-term results of TPMT activity monitoring in azathioprine-treated renal allograft recipients. J. Am. Soc. Nephrol. 12(1) , 170–176 (2001).
  • Thervet E , AnglicheauD, ToledanoN et al. Clinical consequences of the polymorphism of azathioprine metabolism. Transplant. Proc. 32(8) , 2780 (2000).
  • Allison AC , EuguiEM. The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin. Immunopathol.14(4) , 353–380 (1993).
  • Ensley RD , BristowMR, OlsenSL et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation 56(1) , 75–82 (1993).
  • Johnson AG , RigbyRJ, TaylorPJ et al. The kinetics of mycophenolic acid and its glucuronide metabolite in adult kidney transplant recipients. Clin. Pharmacol. Ther. 66(5) , 492–500 (1999).
  • Meier-Kriesche HU , ShawLM, KoreckaM, KaplanB. Pharmacokinetics of mycophenolic acid in renal insufficiency. Ther. Drug Monit.22(1) , 27–30 (2000).
  • Jacobson PA , SchladtD, OettingWS et al. Genetic determinants of mycophenolate-related anemia and leucopenia after transplantation. Transplantation 91(3) , 309–316 (2011).
  • Pasanen MK , NeuvonenPJ, NiemiM. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics9(1) , 19–33 (2008).
  • Michelon H , KonigJ, DurrbachA et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics11(12) , 1703–1713 (2010).
  • Miura M , SatohS, InoueK et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol. 63(12) , 1161–1169 (2007).
  • Picard N , YeeSW, WoillardJB et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin. Pharmacol. Ther. 87(1) , 100–108 (2010).
  • Bouamar R , HesselinkDA, van Schaik RH et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet. Genomics22(6) , 399–407 (2012).
  • Hesselink DA , van Hest RM, Mathot R et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant.5(5) , 987–994 (2005).
  • Kobayashi M , SaitohH, KobayashiM, TadanoK, TakahashiY, HiranoT. Cyclosporin A, but not tacrolimus, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats. J. Pharmacol. Exp. Ther.309(3) , 1029–1035 (2004).
  • Westley IS , BroganLR, MorrisRG, EvansAM, SallustioBC. Role of MRP2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab. Dispos.34(2) , 261–266 (2006).
  • Naesens M , KuypersD, VerbekeK, VanrenterghemY. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation82(8) , 1074–1084 (2006).
  • Sanchez-Fructuoso AI , MaestroML, CalvoN et al. The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant. Proc. 41(6) , 2313–2316 (2009).
  • Kuypers DR , NaesensM, VermeireS, VanrenterghemY. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin. Pharmacol. Ther.78(4) , 351–361 (2005).
  • Kuypers DR , De Jonge H, Naesens M et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin. Ther.30(4) , 673–683 (2008).
  • van Schaik RH , van Agteren M, De Fijter JW et al.UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin. Pharmacol. Ther.86(3) , 319–327 (2009).
  • Johnson LA , OettingWS, BasuS, PrausaS, MatasA, JacobsonPA. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur. J. Clin. Pharmacol.64(11) , 1047–1056 (2008).
  • van Gelder T , Le Meur Y, Shaw LM et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther. Drug Monit.28(2) , 145–154 (2006).
  • Woillard JB , RerolleJP, PicardN et al. Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8*2 variant allele. Br. J. Pharmacol. 69(6) , 675–683 (2010).
  • Kagaya H , InoueK, MiuraM et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur. J. Clin. Pharmacol. 63(3) , 279–288 (2007).
  • Zhang WX , ChenB, JinZ et al. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica 38(11) , 1422–1436 (2008).
  • Baldelli S , MerliniS, PericoN et al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics 8(9) , 1127–1141 (2007).
  • Yang JW , LeePH, HutchinsonIV, PravicaV, ShahT, MinDI. Genetic polymorphisms of MRP2 and UGT2B7 and gastrointestinal symptoms in renal transplant recipients taking mycophenolic acid. Ther. Drug Monit.31(5) , 542–548 (2009).
  • van Agteren M , ArmstrongVW, van Schaik RH et al. AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7-840G>A gene polymorphism. Ther. Drug Monit.30(4) , 439–444 (2008).
  • Djebli N , PicardN, RerolleJP, Le Meur Y, Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet. Genomics17(5) , 321–330 (2007).
  • Barraclough KA , LeeKJ, StaatzCE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics11(3) , 369–390 (2010).
  • Wang J , YangJW, ZeeviA et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin. Pharmacol. Ther.83(5) , 711–717 (2008).
  • Sombogaard F , van Schaik RH, Mathot RA et al. Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T > C polymorphism. Pharmacogenet. Genomics19(8) , 626–634 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.