359
Views
0
CrossRef citations to date
0
Altmetric
Review

Germline Pharmacogenetics of Paclitaxel for Cancer Treatment

Pages 1065-1084 | Published online: 09 Jul 2013

References

  • Mielke S , SparreboomA, SteinbergSM et al. Association of paclitaxel pharmacokinetics with the development of peripheral neuropathy in patients with advanced cancer. Clin. Cancer Res. 11(13) , 4843–4850 (2005).
  • Smith NF , AcharyaMR, DesaiN, FiggWD, SparreboomA. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer. Biol. Ther.4(8) , 815–818 (2005).
  • Sonnichsen D , LiuQ, SchuetzE, SchuetzJ, PappoA, RellingM. Variability in human cytochrome P450 paclitaxel metabolism. J. Pharmacol. Exp. Ther.275(2) , 566–575 (1995).
  • Huisman MT , ChhattaAA, van Tellingen O, Beijnen JH, Schinkel AH. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int. J. Cancer116(5) , 824–829 (2005).
  • Sparreboom A , van Asperen J, Mayer U et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl Acad. Sci. USA94(5) , 2031–2035 (1997).
  • Ioannidis JP , TaroneR, McLaughlinJK. The false-positive to false-negative ratio in epidemiologic studies. Epidemiology22(4) , 450–456 (2011).
  • Lai XS , YangLP, LiXT, LiuJP, ZhouZW, ZhouSF. Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms. Curr. Drug Metab.10(9) , 1009–1047 (2009).
  • Hertz DL , WalkoCM, BridgesAS et al. Pilot study of rosiglitazone as an in vivo probe of paclitaxel exposure. Br. J. Clin. Pharmacol. 74(1) , 197–200 (2012).
  • The International HapMap Project. Nature426(6968) , 789–796 (2003).
  • Rowbotham SE , BoddyAV, RedfernCPF, VealGJ, DalyAK. Relevance of nonsynonymous CYP2C8 polymorphisms to 13-cis retinoic acid and paclitaxel hydroxylation. Drug Metab. Dispos.38(8) , 1261–1266 (2010).
  • Gréen H , SöderkvistP, RosenbergP et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin. Pharmacol. Toxicol. 104(2) , 130–137 (2009).
  • Bergmann TK , Brasch-AndersenC, GréenH et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J. 11(2) , 113–120 (2011).
  • de Graan AJ , ElensL, SprowlJA et al. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin. Cancer Res. doi:10.1158/1078-0432.CCR-12-3786 (2013) (Epub ahead of print).
  • Henningsson A , MarshS, LoosWJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin. Cancer Res. 11(22) , 8097–8104 (2005).
  • Fransson MN , GréenH, LittonJ, FribergLE. Influence of cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanism-based model. Drug Metab. Dispos.39(2) , 247–255 (2011).
  • Marsh S , SomloG, LiX et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J. 7(5) , 362–365 (2007).
  • Leskela S , JaraC, Leandro-GarciaL et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J. 11(2) , 121–129 (2011).
  • Hertz DL , RoyS, Motsinger-ReifAA et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann. Oncol.24(6) , 1472–1478 (2013).
  • Marsh S , PaulJ, KingCR, GiffordG, McLeodHL, BrownR. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in ovarian cancer. J. Clin. Oncol.25(29) , 4528–4535 (2007).
  • Ofverholm A , EinbeigiZ, ManouchehrpourS, AlbertssonP, SkrticS, EnerbackC. The ABCB1 3435 T allele does not increase the risk of paclitaxel-induced neurotoxicity. Oncol. Lett.1(1) , 151–154 (2010).
  • Rizzo R , SpaggiariF, IndelliM et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res. Treat. 124(2) , 593–598 (2010).
  • Bergmann TK , Brasch-AndersenC, GréenH et al. Impact of ABCB1 variants on neutrophil depression: a pharmacogenomic study of paclitaxel in 92 women with ovarian cancer. Basic Clin. Pharmacol. Toxicol. 110(2) , 199–204 (2012).
  • Hertz DL , Motsinger-ReifAA, DrobishA et al. CYP2C8*3 predicts benefit–risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res. Treat.134(1) , 401–410 (2012).
  • Bergmann TK , GréenH, Brasch-AndersenC et al. Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur. J. Clin. Pharmacol. 67(7) , 693–700 (2011).
  • Gandara DR , KawaguchiT, CrowleyJ et al. Japanese-US common-arm analysis of paclitaxel plus carboplatin in advanced non-small-cell lung cancer: a model for assessing population-related pharmacogenomics. J. Clin. Oncol. 27(21) , 3540–3546 (2009).
  • Jiang H , ZhongF, SunL, FengW, HuangZ, TanX. Structural and functional insights into polymorphic enzymes of cytochrome P450 2C8. Amino Acids40(4) , 1195–1204 (2011).
  • Dai D , ZeldinDC, BlaisdellJA et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11(7) , 597–607 (2001).
  • Hichiya H , Tanaka-KagawaT, SoyamaA et al. Functional characterization of five novel CYP2C8 variants, G171S, R186X, R186G, K247R, and K383N, found in a Japanese population. Drug Metab. Dispos. 33(5) , 630–636 (2005).
  • Saito Y , KatoriN, SoyamaA et al. CYP2C8 haplotype structures and their influence on pharmacokinetics of paclitaxel in a Japanese population. Pharmacogenet. Genomics17(7) , 461–471 (2007).
  • Soyama A , SaitoY, HaniokaN et al. Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol. Pharm. Bull. 24(12) , 1427–1430 (2001).
  • Hanioka N , MatsumotoK, SaitoY, NarimatsuS. Functional characterization of CYP2C8.13 and CYP2C8.14: catalytic activities toward paclitaxel. Basic Clin. Pharmacol. Toxicol.107(1) , 565–569 (2010).
  • Rodriguez-Antona C , NiemiM, BackmanJT et al. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J. 8(4) , 268–277 (2007).
  • Gréen H , KhanMS, Jakobsen-FalkI, Åvall-LundqvistE, PetersonC. Impact of CYP3A5*3 and CYP2C8-HapC on paclitaxel/carboplatin-induced myelosuppression in patients with ovarian cancer. J. Pharm. Sci. doi: 10.1002/jps.22680 (2011) (Epub ahead of print).
  • Wojnowski L , KamdemLK. Clinical implications of CYP3A polymorphisms. Expert Opin. Drug Metab. Toxicol.2(2) , 171–182 (2006).
  • Backman JT , KivistoKT, OlkkolaKT, NeuvonenPJ. The area under the plasma concentration–time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur. J. Clin. Pharmacol.54(1) , 53–58 (1998).
  • Rahmioglu N , HeatonJ, ClementG et al. Genetic epidemiology of induced CYP3A4 activity. Pharmacogenet. Genomics 21(10) , 642–651 (2011).
  • Zhou L , YaoF, LuanH et al. CYP3A4*1B polymorphism and cancer risk: a HuGE review and meta-analysis. Tumor Biol.34(2) , 649–660 (2013).
  • Amirimani B , NingB, DeitzAC, WeberBL, KadlubarFF, RebbeckTR. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ. Mol. Mutagen.42(4) , 299–305 (2003).
  • Rodríguez-Antona C , SayiJG, GustafssonLL, BertilssonL, Ingelman-SundbergM. Phenotype–genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles. Biochem. Biophys. Res. Commun.338(1) , 299–305 (2005).
  • Wang D , GuoY, WrightonSA, CookeGE, SadeeW. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J.11(4) , 274–286 (2011).
  • Nakajima Y , YoshitaniT, Fukushima-UesakaH et al. Impact of the haplotype CYP3A4*16B harboring the Thr185Ser substitution on paclitaxel metabolism in Japanese patients with cancer. Clin. Pharmacol. Ther. 80(2) , 179–191 (2006).
  • Maekawa K , HarakawaN, YoshimuraT et al. CYP3A4*16 and CYP3A4*18 alleles found in east Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs. Drug Metab. Dispos.38(12) , 2100–2104 (2010).
  • Nakajima M , FujikiY, KyoS et al. Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J. Clin. Pharmacol. 45(6) , 674–682 (2005).
  • Kuehl P , ZhangJ, LinY et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 27(4) , 383–391 (2001).
  • Baker SD , VerweijJ, CusatisGA et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin. Pharmacol. Ther. 85(2) , 155–163 (2008).
  • Ieiri I . Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab. Pharmacokinet.27(1) , 85–105 (2012).
  • Chang H , RhaSY, JeungHC et al. Association of the ABCB1 3435C>T polymorphism and treatment outcomes in advanced gastric cancer patients treated with paclitaxel-based chemotherapy. Oncol. Rep. 23(1) , 271–278 (2010).
  • Chang H , RhaSY, JeungHC et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann. Oncol. 20(2) , 272–277 (2009).
  • Hemauer SJ , NanovskayaTN, Abdel-RahmanSZ, PatrikeevaSL, HankinsGDV, AhmedMS. Modulation of human placental P-glycoprotein expression and activity by MDR1 gene polymorphisms. Biochem. Pharmacol.79(6) , 921–925 (2010).
  • Jiko M , YanoI, SatoE et al. Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers. Int. J. Clin. Oncol. 12(4) , 284–290 (2007).
  • Yamaguchi H , HishinumaT, EndoN et al. Genetic variation in ABCB1 influences paclitaxel pharmacokinetics in Japanese patients with ovarian cancer. Int. J. Gynecol. Cancer 16(3) , 979–985 (2006).
  • Grau JJ , CaballeroM, CampayoM et al. Gene single nucleotide polymorphism accumulation improves survival in advanced head and neck cancer patients treated with weekly paclitaxel. Laryngoscope 119(8) , 1484–1490 (2009).
  • Johnatty SE , BeesleyJ, PaulJ et al. ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin. Cancer Res.14(17) , 5594–5601 (2008).
  • Shitara K , MatsuoK, ItoS et al. Effects of genetic polymorphisms in the ABCB1 gene on clinical outcomes in patients with gastric cancer treated by second-line chemotherapy. Asian Pac. J. Cancer. Prev. 11(2) , 447–452 (2010).
  • Sissung TM , MrossK, SteinbergSM et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur. J. Cancer 42(17) , 2893–2896 (2006).
  • Gow JM , HodgesLM, ChinnLW, KroetzDL. Substrate-dependent effects of human ABCB1 coding polymorphisms. J. Pharmacol. Exp. Ther.325(2) , 435–442 (2008).
  • Kwon WS , RhaSY, JeungH et al. G–T haplotype (2677G>T/A and 3435C>T) of ABCB1 gene polymorphisms is associated with ethnic differences to paclitaxel sensitivity in cancer cells with different gene expression pattern. Cancer Lett. 277(2) , 155–163 (2009).
  • Gréen H , SoderkvistP, RosenbergP, HorvathG, PetersonC. mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin. Cancer Res.12(3) , 854–859 (2006).
  • Marsh S , KingCR, McLeodHL, PaulJ, GiffordG, BrownR. ABCB1 2677G>T/A genotype and paclitaxel pharmacogenetics in ovarian cancer. Clin. Cancer Res.12(13) , 4127–4129 (2006).
  • Kim JW , KimJH, ImSA et al. ABCB1, FCGR2A, and FCGR3A polymorphisms in patients with HER2-positive metastatic breast cancer who were treated with first-line taxane plus trastuzumab chemotherapy. Oncology83(4) , 218–227 (2012).
  • Ludwig AH , KupryjañczykJ. Does MDR-1 G2677T/A polymorphism really associate with ovarian cancer response to paclitaxel chemotherapy? Clin. Cancer Res.12(20) , 6204–6204 (2006).
  • Kim HS , KimM, ChungHH et al. Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol. Oncol. 113(2) , 264–269 (2009).
  • Crouthamel MH , WuD, YangZ, HoRJY. A novel MDR1 G1199T variant alters drug resistance and efflux transport activity of P-glycoprotein in recombinant Hek cells. J. Pharm. Sci.95(12) , 2767–2777 (2006).
  • Gréen H , SöderkvistP, RosenbergP, HorvathG, PetersonC. ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. J. Pharm. Sci.97(6) , 2045–2048 (2008).
  • Takane H , KobayashiD, HirotaT et al. Haplotype-oriented genetic analysis and functional assessment of promoter variants in the MDR1 (ABCB1) gene. J. Pharmacol. Exp. Ther. 311(3) , 1179–1187 (2004).
  • Ieiri I , HiguchiS, SugiyamaY. Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin. Drug Metab. Toxicol.5(7) , 703–729 (2009).
  • Lagas JS , VlamingML, van Tellingen O et al. Multidrug resistance protein 2 is an important determinant of paclitaxel pharmacokinetics. Clin. Cancer Res.12(20) , 6125–6132 (2006).
  • Sun N , SunX, ChenB et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother. Pharmacol.65(3) , 437–446 (2010).
  • van de Steeg E , van Esch A, Wagenaar E et al. High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin. Cancer Res.17(2) , 294–301 (2011).
  • Takano M , OtaniY, TandaM, KawamiM, NagaiJ, YumotoR. Paclitaxel-resistance conferred by altered expression of efflux and influx transporters for paclitaxel in the human hepatoma cell line, HepG2. Drug Metab. Pharmacokinet.24(5) , 418–427 (2009).
  • Smith NF , MarshS, Scott-HortonTJ et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin. Pharmacol. Ther. 81(1) , 76–82 (2007).
  • Burckhardt G , BurckhardtBC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb. Exp. Pharmacol. (201) , 29–104 (2011).
  • Tian C , AmbrosoneCB, DarcyKM et al. Common variants in ABCB1, ABCC2 and ABCG2 genes and clinical outcomes among women with advanced stage ovarian cancer treated with platinum and taxane-based chemotherapy: a gynecologic oncology group study. Gynecol. Oncol. 124(3) , 575–581 (2012).
  • Hasmats J , KupershmidtI, Rodríguez-AntonaC et al. Identification of candidate SNPs for drug induced toxicity from differentially expressed genes in associated tissues. Gene 506(1) , 62–68 (2012).
  • Chen Y , TangY, GuoC, WangJ, BoralD, NieD. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem. Pharmacol.83(8) , 1112–1126 (2012).
  • Lim YP , LiuCH, ShyuLJ, HuangJD. Functional characterization of a novel polymorphism of pregnane X receptor, Q158K, in Chinese subjects. Pharmacogenet. Genomics15(5) , 337–341 (2005).
  • Saeki M , KuroseK, HasegawaR, TohkinM. Functional analysis of genetic variations in the 5´-flanking region of the human MDR1 gene. Mol. Genet. Metab.102(1) , 91–98 (2011).
  • Berrieman HK , LindMJ, CawkwellL. Do β-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol.5(3) , 158–164 (2004).
  • Leandro-Garcia LJ , LeskelaS, Jara Sanchez C et al. Regulatory polymorphisms in β-tubulin IIa are associated with paclitaxel-induced peripheral neuropathy. Clin. Cancer Res.18(16) , 4441–4448 (2012).
  • Leandro-García LJ , LeskeläS, Inglada-PérezL et al. Hematologic β-tubulin VI isoform exhibits genetic variability that influences paclitaxel toxicity. Cancer Res. 72(18) , 4744–4752 (2012).
  • Gajjar K , Martin-HirschPL, MartinFL. CYP1B1 and hormone-induced cancer. Cancer Lett.324(1) , 13–30 (2012).
  • Bournique B , LemariéA. Docetaxel (Taxotere) is not metabolized by recombinant human CYP1B1 in vitro, but acts as an effector of this isozyme. Drug Metab. Dispos.30(11) , 1149–1152 (2002).
  • Pastina I , GiovannettiE, ChioniA et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in castration-resistant prostate cancer (CRPC) patients. BMC Cancer 10 , 511 (2010).
  • Figg WD , LiH, SissungT et al. Pre-clinical and clinical evaluation of estramustine, docetaxel and thalidomide combination in androgen-independent prostate cancer. BJU Int. 99(5) , 1047–1055 (2007).
  • Sissung TM , DanesiR, PriceDK et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol. Cancer Ther. 7(1) , 19–26 (2008).
  • Sucheston L , ZhaoH, YaoS et al. Genetic predictors of taxane-induced neurotoxicity in a SWOG Phase III intergroup adjuvant breast cancer treatment trial (S0221). Breast Cancer Res. Treat. 130(3) , 993–1002 (2011).
  • Sato Y , YamamotoN, KunitohH et al. Genome-wide association study on overall survival of advanced non-small cell lung cancer patients treated with carboplatin and paclitaxel. J. Thorac. Oncol. 6(1) , 132–138 (2011).
  • Schneider BP , LiL, MillerK et al. Genetic associations with taxane-induced neuropathy by a genome-wide association study (GWAS) in E5103. ASCO Meeting Abstracts 29(15 Suppl.) , S1000 (2011).
  • Bergmann TK , VachW, FeddersenS et al. GWAS-based association between RWDD3 and TECTA variants and paclitaxel induced neuropathy could not be confirmed in Scandinavian ovarian cancer patients. Acta Oncol. 52(4) , 871–874 (2012).
  • Baldwin RM , OwzarK, ZembutsuH et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 18(18) , 5099–5109 (2012).
  • Delague V , JacquierA, HamadoucheT et al. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot–Marie–Tooth type 4H. Am. J. Hum. Genet. 81(1) , 1–16 (2007).
  • Wheeler HE , GamazonER, WingC et al. Integration of cell line and clinical trial genome-wide analyses supports a polygenic architecture of paclitaxel-induced sensory peripheral neuropathy. Clin. Cancer Res. 19(2) , 491–499 (2012).
  • Njiaju UO , GamazonER, GorsicLK et al. Whole-genome studies identify solute carrier transporters in cellular susceptibility to paclitaxel. Pharmacogenet. Genomics 22(7) , 498–507 (2012).
  • O‘Brien C , CavetG, PanditaA et al. Functional genomics identifies ABCC3 as a mediator of taxane resistance in HER2-amplified breast cancer. Cancer Res. 68(13) , 5380–5389 (2008).
  • Niu N , SchaidD, AboR et al. Genetic association with overall survival of taxane-treated lung cancer patients – a genome-wide association study in human lymphoblastoid cell lines followed by a clinical association study. BMC Cancer 12(1) , 422 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.