99
Views
0
CrossRef citations to date
0
Altmetric
News & Views

Research Highlights: Highlights from the Latest Articles Focusing on a New Gene Set for Better Drug Response Prediction of Epilepsy Patients

, , &
Pages 581-586 | Published online: 05 May 2014

References

  • Reid CA , BerkovicSF, PetrouS. Mechanisms of human inherited epilepsies. Prog. Neurobiol.87 , 41–57 (2009).
  • Gardiner M . Genetics of idiopathic generalized epilepsies. Epilepsia46(Suppl. 9) , S15–S20 (2005).
  • Heron SE , SmithKR, BahloM et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 44 , 1188–1190 (2012).
  • Barcia G , FlemingMR, DeligniereA et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet.44 , 1255–1259 (2012).
  • Brown MR , KronengoldJ, GazulaVR et al. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J. Physiol. 586(Pt 21) , 5161–5179 (2008).
  • Ruffin VA , GuXQ, ZhouD et al. The sodium-activated potassium channel slack is modulated by hypercapnia and acidosis. Neuroscience 151 , 410–418 (2008).
  • Rogawski MA , LoscherW. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci.5 , 553–564 (2004).
  • Tan NC , MulleyJC, BerkovicSF. Genetic association studies in epilepsy: “the truth is out there”. Epilepsia45 , 1429–1442 (2004).
  • Cavalleri GL , LynchJM, DepondtC et al. Failure to replicate previously reported genetic associations with sporadic temporal lobe epilepsy: where to from here? Brain 128(Pt 8) , 1832–1840 (2005).
  • Cavalleri GL, McCormack M, Alhusaini S, Chaila E, Delanty N. Pharmacogenomics and epilepsy: the road ahead. Pharmacogenomics12 , 1429–1447 (2011).
  • Kumari R , LakhanR, KalitaJ, GargRK, MisraUK, MittalB. Potential role of GABAA receptor subunit; GABRA6, GABRB2 and GABRR2 gene polymorphisms in epilepsy susceptibility and pharmacotherapy in North Indian population. Clin. Chim. Acta412 , 1244–1248 (2011).
  • Kumari R , LakhanR, KalitaJ, MisraUK, MittalB. Association of alpha subunit of GABAA receptor subtype gene polymorphisms with epilepsy susceptibility and drug resistance in north Indian population. Seizure19 , 237–241 (2010).
  • Kinirons P , CavalleriGL, ShahwanA et al. Examining the role of common genetic variation in the gamma2 subunit of the GABA(A) receptor in epilepsy using tagging SNPs. Epilepsy Res. 70 , 229–238 (2006).
  • Ma S , Bou-KhalilB, BlairMA, SutcliffeJS, HainesJL, HederaP. Mutations in GABRA1, GABRA5, GABRG2 and GABRD receptor genes are not a major factor in the pathogenesis of familial focal epilepsy preceded by febrile seizures. Neurosci. Lett.394 , 74–78 (2006).
  • Hung CC , ChenPL, HuangWM et al. Gene-wide tagging study of the effects of common genetic polymorphisms in the alpha subunits of the GABA(A) receptor on epilepsy treatment response. Pharmacogenomics 14 , 1849–1856 (2013).
  • Chou IC , LeeCC, TsaiCH et al. Association of GABRG2 polymorphisms with idiopathic generalized epilepsy. Pediatr. Neurol. 36 , 40–44 (2007).
  • Chou IC , PengCT, HuangCC, TsaiJJ, TsaiFJ, TsaiCH. Association analysis of gamma 2 subunit of gamma-aminobutyric acid type A receptor polymorphisms with febrile seizures. Pediatr. Res.54 , 26–29 (2003).
  • Nakayama J , HamanoK, NoguchiE et al. Failure to find causal mutations in the GABA(A)-receptor gamma2 subunit (GABRG2) gene in Japanese febrile seizure patients. Neurosci. Lett. 343 , 117–120 (2003).
  • Grover S , GuptaM, KukretiR et al. Challenges and recommendations for conducting epidemiological studies in the field of epilepsy pharmacogenetics. Indian J. Hum. Genet. 17(Suppl. 1) , S4–S11 (2011).
  • Zhou BT , ZhouQH, YinJY et al. Comprehensive analysis of the association of SCN1A gene polymorphisms with the retention rate of carbamazepine following monotherapy for new-onset focal seizures in the Chinese Han population. Clin. Exp. Pharmacol. Physiol. 39 , 379–384 (2012).
  • Emrich HM , DoseM, vonZD. The use of sodium valproate, carbamazepine and oxcarbazepine in patients with affective disorders. J. Affect. Disord.8 , 243–250 (1985).
  • Post RM , KetterTA, UhdeT, BallengerJC. Thirty years of clinical experience with carbamazepine in the treatment of bipolar illness: principles and practice. CNS Drugs21 , 47–71 (2007).
  • Grover S , BalaK, SharmaS. Absence of a general association between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients. Biochimie92 , 1207–1212 (2010).
  • Grover S , Gourie-DeviM, BalaK. Genetic association analysis of transporters identifies ABCC2 loci for seizure control in women with epilepsy on first-line antiepileptic drugs. Pharmacogenet. Genomics22 , 447–465 (2012).
  • Hung CC , ChangWL, HoJL et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 13 , 159–169 (2012).
  • Abe T , SeoT, IshitsuT, NakagawaT, HoriM, NakagawaK. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br. J. Clin. Pharmacol.66 , 304–307 (2008).
  • Tate SK , DepondtC, SisodiyaSM et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl Acad. Sci. USA 102 , 5507–5512 (2005).
  • Tate SK , SinghR, HungCC et al. A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet. Genomics 16 , 721–726 (2006).
  • Heinzen EL , YoonW, TateSK et al. Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A. Am. J. Hum. Genet. 80 , 876–883 (2007).
  • Zimprich F , StogmannE, BonelliS et al. A functional polymorphism in the SCN1A gene is not associated with carbamazepine dosages in Austrian patients with epilepsy. Epilepsia 49 , 1108–1109 (2008).
  • Manna I , GambardellaA, BianchiA et al. A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia 52 , e40–e44 (2011).
  • Hassett C , LinJ, CartyCL, LaurenzanaEM, OmiecinskiCJ. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch. Biochem. Biophys.337 , 275–283 (1997).
  • Kitteringham NR , DavisC, HowardN, PirmohamedM, ParkBK. Interindividual and interspecies variation in hepatic microsomal epoxide hydrolase activity: studies with cis-stilbene oxide, carbamazepine 10, 11-epoxide and naphthalene. J. Pharmacol. Exp. Ther. 278 , 1018–1027 (1996).
  • Nakajima Y , SaitoY, ShisekiK et al. Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. Eur. J. Clin. Pharmacol. 61 , 25–34 (2005).
  • Makmor-Bakry M , SillsGJ, HitirisN, ButlerE, WilsonEA, BrodieMJ. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin. Neuropharmacol.32 , 205–212 (2009).
  • Grover S , Gourie-DeviM, BaghelR et al. Genetic profile of patients with epilepsy on first-line antiepileptic drugs and potential directions for personalized treatment. Pharmacogenomics 11 , 927–941 (2010).
  • Cavalleri GL , McCormackM, AlhusainiS, ChailaE, DelantyN. Pharmacogenomics and epilepsy: the road ahead. Pharmacogenomics12 , 1429–1447 (2011).
  • Grover S , KukretiR. A systematic review and meta-analysis of the role of ABCC2 variants on drug response in patients with epilepsy. Epilepsia54 , 936–945 (2013).
  • Devlin B , RoederK. Genomic control for association studies. Biometrics55 , 997–1004 (1999).
  • Motsinger-Reif AA , JorgensonE, RellingMV et al. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet. Genomics 23 , 383–394 (2013).
  • Ho MK , GoldmanD, HeinzA et al. Breaking barriers in the genomics and pharmacogenetics of drug addiction. Clin. Pharmacol. Ther. 88 , 779–791 (2010).
  • Daly AK . Genome-wide association studies in pharmacogenomics. Nat. Rev. Genet.11 , 241–246 (2010).
  • Holmans P , GreenEK, PahwaJS et al. Gene ontology analysis of GWA study data sets provides insights into the biology of bipolar disorder. Am. J. Hum. Genet. 85 , 13–24 (2009).
  • Holmans P , MoskvinaV, JonesL et al. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson‘s disease. Hum. Mol. Genet. 22 , 1039–1049 (2012).
  • Eleftherohorinou H , HoggartCJ, WrightVJ, LevinM, CoinLJ. Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways. Hum. Mol. Genet.20 , 3494–3506 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.