599
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

miR-938rs2505901 T>C Polymorphism Increases Hirschsprung Disease Risk: A Case–Control Study of Chinese Children

, , , , , ORCID Icon & show all
Pages 551-558 | Received 05 Jan 2021, Accepted 25 Aug 2021, Published online: 11 Nov 2021

References

  • Amiel J , Sproat-EmisonE , Garcia-BarceloMet al. Hirschsprung disease, associated syndromes and genetics: a review. J. Med. Genet.45(1), 1–14 (2008).
  • Burzynski G , ShepherdIT , EnomotoH. Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung’s disease. Neurogastroenterol. Motil.21(2), 113–127 (2009).
  • Barlow AJ , DixonJ , DixonMJ , TrainorPA. Balancing neural crest cell intrinsic processes with those of the microenvironment in Tcof1 haploinsufficient mice enables complete enteric nervous system formation. Hum. Mol. Genet.21(8), 1782–1793 (2012).
  • Tam PK , Garcia-BarceloM. Genetic basis of Hirschsprung’s disease. Pediatr. Surg. Int.25(7), 543–558 (2009).
  • Tang CS , ChengG , SoMTet al. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet.8(5), e1002687 (2012).
  • Heanue TA , PachnisV. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat. Rev. Neurosci.8(6), 466–479 (2007).
  • Emison ES , MccallionAS , KashukCSet al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature434(7035), 857–863 (2005).
  • Badner JA , SieberWK , GarverKL , ChakravartiA. A genetic study of Hirschsprung disease. Am. J. Hum. Genet.46(3), 568–580 (1990).
  • Alves MM , SribudianiY , BrouwerRWet al. Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev. Biol.382(1), 320–329 (2013).
  • Lake JI , HeuckerothRO. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol.305(1), G1–24 (2013).
  • Jiang Q , HoYY , HaoL , NicholsBerrios C , ChakravartiA. Copy number variants in candidate genes are genetic modifiers of Hirschsprung disease. PLoS ONE6(6), e21219 (2011).
  • Fitze G , SchierzM , KuhlischEet al. Novel intronic polymorphisms in the RET proto-oncogene and their association with Hirschsprung disease. Hum. Mutat.22(2), 177 (2003).
  • Gui H , TangWK , SoMTet al. RET and NRG1 interplay in Hirschsprung disease. Hum. Genet.132(5), 591–600 (2013).
  • Tang W , LiH , TangJet al. Specific serum microRNA profile in the molecular diagnosis of Hirschsprung’s disease. J. Cell. Mol. Med.18(8), 1580–1587 (2014).
  • Revel A , AchacheH , StevensJ , SmithY , ReichR. MicroRNAs are associated with human embryo implantation defects. Hum. Reprod.26(10), 2830–2840 (2011).
  • Kayano M , HigakiS , SatohJIet al. Plasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysis. Biomark. Res.4, 22 (2016).
  • Bong IPN , NgCC , BaharuddinP , ZakariaZ. MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy. Genes Genomics39(5), 533–540 (2017).
  • Gao Y , HeY , DingJet al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1α 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis30(12), 2064–2069 (2009).
  • Dumortier O , HinaultC , Van ObberghenE. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab.18(3), 312–324 (2013).
  • Runtsch MC , RoundJL , O’connellRM. MicroRNAs and the regulation of intestinal homeostasis. Front. Genet.5, 347 (2014).
  • Sharan A , ZhuH , XieHet al. Down-regulation of miR-206 is associated with Hirschsprung disease and suppresses cell migration and proliferation in cell models. Sci. Rep.5, 9302 (2015).
  • Zhu D , XieH , LiHet al. Nidogen-1 is a common target of microRNAs miR-192/215 in the pathogenesis of Hirschsprung’s disease. J. Neurochem.134(1), 39–46 (2015).
  • Chen G , DuC , ShenZet al. microRNA-939 inhibits cell proliferation via targeting LRSAM1 in Hirschsprung’s disease. Aging9(12), 2471–2479 (2017).
  • Li H , LiB , ZhuDet al. Downregulation of lncRNA MEG3 and miR-770-5p inhibit cell migration and proliferation in Hirschsprung’s disease. Oncotarget8(41), 69722–69730 (2017).
  • Wu L , YuanW , ChenJet al. Increased miR-214 expression suppresses cell migration and proliferation in Hirschsprung disease by interacting with PLAGL2. Pediatr. Res.86(4), 460–470 (2019).
  • Onkes W , FredrikR , MicciFet al. Breakpoint characterization of the der(19)t(11;19)(q13;p13) in the ovarian cancer cell line SKOV-3. Genes Chromosomes Cancer52(5), 512–522 (2013).
  • Li CF , LiYC , JinJP , YanZK , LiDD. miR-938 promotes colorectal cancer cell proliferation via targeting tumor suppressor PHLPP2. Eur. J. Pharmacol.807, 168–173 (2017).
  • Mi X , HeH , DengYet al. Lack of an association of miR-938 SNP in IDDM10 with human Type 1 diabetes. Diabetol. Metab. Syndr.3(1), 27 (2011).
  • Cho SH , AhnEH , AnHJet al. Association of miR-938G >A polymorphisms with primary ovarian insufficiency (POI)-related gene expression. Int. J. Mol. Sci.18(6), 1255 (2017).
  • Wu Y , JiaZ , CaoDet al. Predictive value of miR-219-1, miR-938, miR-34b/c, and miR-218 polymorphisms for gastric cancer susceptibility and prognosis. Dis. Markers.2017, 4731891 (2017).
  • Arisawa T , TaharaT , ShiroedaHet al. Genetic polymorphisms of IL17A and pri-microRNA-938, targeting IL17A 3′-UTR, influence susceptibility to gastric cancer. Hum. Immunol.73(7), 747–752 (2012).
  • Lee HA , AhnEH , JangHGet al. Association between miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T polymorphisms and risk of recurrent implantation failure. Reprod. Sci.26(4), 469–475 (2019).
  • Narayanan SK , SoundappanSS , KwanEet al. Aganglionosis with the absence of hypertrophied nerve fibres predicts disease proximal to rectosigmoid colon. Pediatr. Surg. Int.32(3), 221–226 (2016).
  • He J , QiuLX , WangMYet al. Polymorphisms in the XPG gene and risk of gastric cancer in Chinese populations. Hum. Genet.131(7), 1235–1244 (2012).
  • He J , WangF , ZhuJet al. Association of potentially functional variants in the XPG gene with neuroblastoma risk in a Chinese population. J. Cell. Mol. Med.20(8), 1481–1490 (2016).
  • He J , YangT , ZhangRet al. Potentially functional polymorphisms in the LIN28B gene contribute to neuroblastoma susceptibility in Chinese children. J. Cell. Mol. Med.20(8), 1534–1541 (2016).
  • He J , WangF , ZhuJet al. The TP53 gene rs1042522 C>G polymorphism and neuroblastoma risk in Chinese children. Aging9(3), 852–859 (2017).
  • Consortium GT . The genotype-tissue expression (GTEx) project. Nat. Genet.45(6), 580–585 (2013).
  • Butz H , LikoI , CzirjakSet al. MicroRNA profile indicates downregulation of the TGF βpathway in sporadic non-functioning pituitary adenomas. Pituitary.14(2), 112–124 (2011).
  • Li Z , JiaJ , GouJet al. Mmu-miR-126a-3p plays a role in murine embryo implantation by regulating Itga11. Reprod. Biomed. Online31(3), 384–393 (2015).
  • Li H , TangJ , LeiHet al. Decreased MiR-200a/141 suppress cell migration and proliferation by targeting PTEN in Hirschsprung’s disease. Cell. Physiol. Biochem.34(2), 543–553 (2014).
  • Kong YW , Ferland-MccolloughD , JacksonTJ , BushellM. MicroRNAs in cancer management. Lancet Oncol.13(6), e249–e258 (2012).
  • Song FJ , ChenKX. Single-nucleotide polymorphisms among microRNA: big effects on cancer. Chin. J. Cancer30(6), 381–391 (2011).
  • Hu Z , ChenJ , TianTet al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest.118(7), 2600–2608 (2008).
  • Ryan BM , RoblesAI , HarrisCC. Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer10(6), 389–402 (2010).
  • Iwai N , NarabaH. Polymorphisms in human pre-miRNAs. Biochem. Biophys. Res. Commun.331(4), 1439–1444 (2005).
  • Xu J , HuZ , XuZet al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat.30(8), 1231–1236 (2009).
  • He J , ZouY , LiuXet al. Association of common genetic variants in pre-microRNAs and neuroblastoma susceptibility: a two-center study in Chinese children. Mol. Ther. Nucleic Acids11, 1–8 (2018).
  • Iwata J , HosokawaR , Sanchez-LaraPAet al. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J. Biol. Chem.285(7), 4975–4982 (2010).
  • Zhang M , CaoSR , ZhangR , JinJL , ZhuYF. The inhibitory effect of salvianolic acid B on TGF-beta1-induced proliferation and differentiation in lung fibroblasts. Exp. Lung Res.40(4), 172–185 (2014).
  • Qian T , ShiS , XieL , ZhuY. miR-938 promotes cell proliferation by regulating RBM5 in lung adenocarcinoma cells. Cell. Biol. Int.44(1), 295–305 (2020).