68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Machine-Learning Models Utilizing Cyp3A4*1G Show Improved Prediction of Hypoglycemic Medication in Type 2 Diabetes

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 27-37 | Received 31 May 2022, Accepted 16 Sep 2022, Published online: 16 Nov 2022

References

  • International Diabetes Federation Diabetes Atlas 9th edition 2019. https://diabetesatlas.org/en/
  • American Diabetes Association . Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes–2018. Diabetes Care41(Suppl. 1), S73–S85 (2018).
  • Zhou K , PedersenHK , DawedAY , PearsonER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat. Rev. Endocrinol.12(6), 337–346 (2016).
  • Holman RR , PaulSK , BethelMA , MatthewsDR , NeilHAW. 10-year follow-up of intensive glucose control in CYP3A4*1G. N. Engl. J. Med.359(15), 1577–1589 (2008).
  • Maruthur NM , TsengE , HutflessSet al. Diabetes medications as monotherapy or metformin-based combination therapy for Type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med.164(11), 740–751 (2016).
  • Chinese Diabetes Society . National Office for Primary Diabetes Care. National guidelines for the prevention and control of diabetes in primary care (2018). Zhonghua Nei Ke Za Zhi57(12), 885–893 (2018).
  • Aghaei Meybodi HR , HasanzadM , LarijaniB. Path to personalized medicine for type 2 diabetes mellitus: reality and hope. Acta Med. Iran55(3), 166–174 (2017).
  • Ingelman-Sundberg M . Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci.25(4), 193–200 (2004).
  • Chen L , QinS , XieJet al. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics9(6), 691–702 (2008).
  • Zhang W , ChangY-Z , KanQ-Cet al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur. J. Clin. Pharmacol.66(1), 61–66 (2010).
  • He B-X , ShiL , QiuJ , ZengX-H , ZhaoS-J. The effect of CYP3A4*1G allele on the pharmacokinetics of atorvastatin in Chinese Han patients with coronary heart disease. J. Clin. Pharmacol.54(4), 462–467 (2014).
  • Yuan J-J , HouJ-K , ZhangWet al. CYP3A4*1G genetic polymorphism influences metabolism of fentanyl in human liver microsomes in Chinese patients. Pharmacology96(1–2), 55–60 (2015).
  • Zhang Y , SiD , ChenXet al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br. J. Clin. Pharmacol.64(1), 67–74 (2007).
  • Shao H , RenXM , LiuNFet al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics and pharmacodynamics of gliclazide in healthy Chinese Han volunteers. J. Clin. Pharm. Ther.35(3), 351–360 (2010).
  • Chow E , PoonEW , FokBS , ChanJC , TomlinsonB. CYP2C19*2 polymorphism is associated with impaired oral clearance of gliclazide in healthy Chinese. Pharmgenomics Pers. Med.12, 397–401 (2019).
  • Bidstrup TB , BjørnsdottirI , SidelmannUG , ThomsenMS , HansenKT. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol.56(3), 305–314 (2003).
  • Liu Q , Ou-YangQ-G , LinQ-Met al. Effects of 27 CYP3A4 protein variants on saxagliptin metabolism in vitro. Fundam. Clin. Pharmacol.36(1), 150–159 (2021).
  • Mondal MRH , BharatiS , PodderP. Diagnosis of COVID-19 using machine learning and deep learning: a review. CMIR17(12), 1403–1418 (2021).
  • Zhou L , ZhengX , YangD , WangY , BaiX , YeX. Application of multi-label classification models for the diagnosis of diabetic complications. BMC Med. Inform. Decis. Mak.21(1), 182 (2021).
  • Wang W , DaiQ , LiF , XiongY , WeiD-Q. MLCDForest: multi-label classification with deep forest in disease prediction for long non-coding RNAs. Brief. Bioinform.22(3), bbaa104 (2021).
  • Xu J , LiH , LiX. MS-ANet: deep learning for automated multi-label thoracic disease detection and classification. PeerJ. Comput. Sci.7, e541 (2021).
  • Zhang W , LiuF , LuoL , ZhangJ. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformatics16(1), 365 (2015).
  • Zhang S , WangJ , LinZ , LiangY. Application of machine learning techniques in drug-target interactions prediction. CPD27(17), 2076–2087 (2021).
  • Shan X , WangX , LiCet al. Prediction of CYP450 enzyme–substrate selectivity based on the network-based label space division method. J. Chem. Inf. Model.59(11), 4577–4586 (2019).
  • Uddin S , KhanA , HossainME , MoniMA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak.19(1), 281 (2019).
  • Liu H , XieG , MeiJ , ShenW , SunW , LiX. An efficacy-driven approach for medication recommendation in type 2 diabetes treatment using data mining techniques. Stud. Health Technol. Inform.192, 1071 (2013).
  • Wright AP , WrightAT , McCoyAB , SittigDF. The use of sequential pattern mining to predict next prescribed medications. J. Biomed. Inform.53, 73–80 (2015).
  • Mei J , ZhaoS , JinFet al. Deep diabetologist: learning to prescribe hypoglycemic medications with recurrent neural networks. Stud. Health Technol. Inform.245, 1277 (2017).
  • Wang X , YangY , XuY , ChenQ , WangH , GaoH. Predicting hypoglycemic drugs of type 2 diabetes based on weighted rank support vector machine. Knowl. Based Syst.197, 105868 (2020).
  • Zhang M-L , ZhouZ-H. ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit.40(7), 2038–2048 (2007).
  • Mohan V , RadhaV. Precision diabetes is slowly becoming a reality. Med. Princ. Pract.28(1), 1–9 (2019).
  • Kleinberger JW , PollinTI. Personalized medicine in diabetes mellitus: current opportunities and future prospects: personalized medicine in diabetes mellitus. Ann. NY Acad. Sci.1346(1), 45–56 (2015).
  • Khatami F , Mohajeri-TehraniMR , TavangarSM. The importance of precision medicine in type 2 diabetes mellitus (T2DM): from pharmacogenetic and pharmacoepigenetic aspects. Endocr. Metab. Immune Disord. Drug Targets19(6), 719–731 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.