110
Views
0
CrossRef citations to date
0
Altmetric
Review

Genomic Medicine in the Prevention and Treatment of Atherosclerotic Cardiovascular Disease

&
Pages 395-404 | Published online: 18 Jun 2012

References

  • Kullo IJ , DingK. Mechanisms of disease: the genetic basis of coronary heart disease. Nat. Clin. Pract. Cardiovasc. Med.4(10) , 558–569 (2007).
  • Marenberg ME , RischN, BerkmanLF, FloderusB, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N. Engl. J. Med.330(15) , 1041–1046 (1994).
  • Writing Group Members, Lloyd-Jones D, Adams RJ et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation121(7) , e46–e215 (2010).
  • Wilson PWF , D‘AgostinoRB, LevyD, BelangerAM, SilbershatzH, KannelWB. Prediction of coronary heart disease using risk factor categories. Circulation97(18) , 1837–1847 (1998).
  • Erdmann J , WillenborgC, NahrstaedtJ et al. Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10.11.23. Eur. Heart J. 32(2) , 158–168 (2011).
  • Reilly MP , LiM, HeJ et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377(9763) , 383–392 (2011).
  • Kathiresan S , MelanderO, AnevskiD et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med. 358(12) , 1240–1249 (2008).
  • Samani NJ , ErdmannJ, HallAS et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357(5) , 443–453 (2007).
  • Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet.41(3) , 334–341 (2009).
  • Schunkert H , KonigIR, KathiresanS et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43(4) , 333–338 (2011).
  • A genome-wide association study in Europeans and south Asians identifies five new loci for coronary artery disease. Nat. Genet.43(4) , 339–344 (2011).
  • The BC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet.7(9) , e1002260 (2011).
  • Teslovich TM , MusunuruK, SmithAV et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307) , 707–713 (2010).
  • Kathiresan S , MelanderO, GuiducciC et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2) , 189–197 (2008).
  • Musunuru K , StrongA, Frank-KamenetskyM et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466(7307) , 714–719 (2010).
  • Tregouet DA , KonigIR, ErdmannJ et al. Genome-wide haplotype association study identifies the SLC22A3–LPAL2–LPA gene cluster as a risk locus for coronary artery disease. Nat. Genet. 41(3) , 283–285 (2009).
  • Emerging Risk Factors Collaboration, Erqou S, Kaptoge S et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA302(4) , 412–423 (2009).
  • Clarke R , PedenJF, HopewellJC et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361(26) , 2518–2528 (2009).
  • Helgadottir A , ThorleifssonG, ManolescuA et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830) , 1491–1493 (2007).
  • McPherson R , PertsemlidisA, KavaslarN et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830) , 1488–1491 (2007).
  • Brautbar A , BallantyneCM, LawsonK et al. Impact of adding a single allele in the 9p21 locus to traditional risk factors on reclassification of coronary heart disease risk and implications for lipid-modifying therapy in the atherosclerosis risk in communities study. Circ. Cardiovasc. Genet. 2(3) , 279–285 (2009).
  • Morrison AC , BareLA, ChamblessLE et al. Prediction of coronary heart disease risk using a genetic risk score: the atherosclerosis risk in communities study. Am. J. Epidemiol. 166(1) , 28–35 (2007).
  • Humphries SE , CooperJA, TalmudPJ, MillerGJ. Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. Clin. Chem.53(1) , 8–16 (2007).
  • Ripatti S , TikkanenE, Orho-MelanderM et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376(9750) , 1393–1400 (2010).
  • Greenland P , AlpertJS, BellerGA et al. ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults. Circulation 122(25) , e584–e636 (2010).
  • Janssens A , IoannidisJ, BedrosianS et al. Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration. Eur. J. Epidemiol. 26(4) , 313–337 (2011).
  • Peden JF , FarrallM. Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour. Hum. Mol. Genet.20(R2) , R198–R205 (2011).
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447(7146) , 799–816 (2007).
  • Wingrove J , DanielsS, SehnertA et al. Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circ. Cardiovasc. Genet. 1(1) , 31–38 (2008).
  • Sinnaeve PR , DonahueMP, GrassP et al. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease. PLoS ONE 4(9) , e7037 (2009).
  • Rosenberg S , ElashoffM, BeinekeP et al. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann. Intern. Med. 153(7) , 425–434 (2010).
  • Elashoff M , WingroveJ, BeinekeP et al. Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients. BMC Med. Genomics 4(1) , 26 (2011).
  • Thomas GS , VorosS, McPhersonJA et al. The compass trial (NCT01117506): a prospective multi-center, double-blind study assessing a whole blood gene expression test for the detection of obstructive coronary artery disease in symptomatic patients referred for myocardial perfusion imaging. Circulation 124(Suppl. 21) , A11106 (2011).
  • Donahue MP , RoseK, HochstrasserD et al. Discovery of proteins related to coronary artery disease using industrial-scale proteomics analysis of pooled plasma. Am. Heart J. 152(3) , 478–485 (2006).
  • Dardé VM , de la Cuesta F, Gil Dones F, Alvarez-Llamas G, Barderas MG, Vivanco F. Analysis of the plasma proteome associated with acute coronary syndrome: does a permanent protein signature exist in the plasma of ACS patients? J. Proteome Res.9(9) , 4420–4432 (2010).
  • Wishart DS . Applications of metabolomics in drug discovery and development. Drugs R D9(5) , 307–322 (2008).
  • Wang TJ , LarsonMG, VasanRS et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17(4) , 448–453 (2011).
  • Shah SH , BainJR, MuehlbauerMJ et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events/clinical perspective. Circ. Cardiovasc. Genet. 3(2) , 207–214 (2010).
  • Suhre K , ShinSY, PetersenAK et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362) , 54–60 (2011).
  • Weinshilboum R . Inheritance and drug response. N. Engl. J. Med.348(6) , 529–537 (2003).
  • Ansell J , HirshJ, HylekE, JacobsonA, CrowtherM, PalaretiG. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest133(Suppl. 6) , S160–S198 (2008).
  • Daly AK , KingBP. Pharmacogenetics of oral anticoagulants. Pharmacogenetics13(5) , 247–252 (2003).
  • Li T , ChangCY, JinDY, LinPJ, KhvorovaA, StaffordDW. Identification of the gene for vitamin K epoxide reductase. Nature427(6974) , 541–544 (2004).
  • Rieder MJ , ReinerAP, GageBF et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352(22) , 2285–2293 (2005).
  • Takeuchi F , McGinnisR, BourgeoisS et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5(3) , e1000433 (2009).
  • Manolopoulos VG , RagiaG, TavridouA. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics11(4) , 493–496 (2010).
  • Cavallari LH , LangaeeTY, MomaryKM et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin. Pharmacol. Ther. 87(4) , 459–464 (2010).
  • Warfarin (Coumadin®), package insert. Bristol–Myers Squibb, Princeton, NJ, USA (2010).
  • Gage BF , EbyC, JohnsonJA et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 84(3) , 326–331 (2008).
  • International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med.360(8) , 753–764 (2009).
  • Kushner FG , HandM, SmithSC Jr et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol.54(23) , 2205–2241 (2009).
  • Angiolillo DJ , Fernandez-OrtizA, BernardoE et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J. Am. Coll. Cardiol. 49(14) , 1505–1516 (2007).
  • Kazui M , NishiyaY, IshizukaT et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab. Dispos. 38(1) , 92–99 (2010).
  • Hulot JS , BuraA, VillardE et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108(7) , 2244–2247 (2006).
  • Mega JL , SimonT, ColletJP et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304(16) , 1821–1830 (2010).
  • Scott SA , SangkuhlK, GardnerEE et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450–2C19 (CYP2C19) genotype and clopidogrel therapy. Clin. Pharmacol. Ther. 90(2) , 328–332 (2011).
  • Pare G , MehtaSR, YusufS et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 363(18) , 1704–1714 (2010).
  • Wallentin L , JamesS, StoreyRF et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 376(9749) , 1320–1328 (2010).
  • Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation106(25) , 3143–3421 (2002).
  • Thompson PD , ClarksonP, KarasRH. Statin-associated myopathy. JAMA289(13) , 1681–1690 (2003).
  • Grundy SM , CleemanJI, MerzCN et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation 110(2) , 227–239 (2004).
  • SEARCH Collaborative Group, Link E, Parish S et al.SLCO1B1 variants and statin-induced myopathy – a genomewide study. N. Engl. J. Med.359(8) , 789–799 (2008).
  • Voora D , ShahSH, SpasojevicI et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54(17) , 1609–1616 (2009).
  • Donnelly LA , DoneyAS, TavendaleR et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with Type 2 diabetes: a go-DARTS study. Clin. Pharmacol. Ther. 89(2) , 210–216 (2011).
  • Cohen JC , BoerwinkleE, MosleyTH, HobbsHH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med.354(12) , 1264–1272 (2006).
  • Smith GD , EbrahimS. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol.33(1) , 30–42 (2004).
  • Zacho J , Tybjærg-HansenA, JensenJS, GrandeP, SillesenH, NordestgaardBG. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med.359(18) , 1897–1908 (2008).
  • CRP CHD Genetics Collaboration. Collaborative pooled analysis of data on C-reactive protein gene variants and coronary disease: judging causality by Mendelian randomisation. Eur. J. Epidemiol.23(8) , 531–540 (2008).
  • Park JH , WacholderS, GailMH et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 42(7) , 570–575 (2010).
  • Shaw AT , YasothanU, KirkpatrickP. Crizotinib. Nat. Rev. Drug Discov.10(12) , 897–898 (2011).
  • Erdmann J , GroszhennigA, BraundPS et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 41(3) , 280–282 (2009).
  • Gudbjartsson DF , BjornsdottirUS, HalapiE et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41(3) , 342–347 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.