80
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Pediatric Transplantation: Opportunities for Pharmacogenomics and Genomics

&
Pages 397-404 | Published online: 06 Jun 2013

References

  • Kirk R , DipchandAI, EdwardsLB et al. The Registry of the International Society for Heart and Lung Transplantation: Fifteenth Pediatric Heart Transplantation Report – 2012. J. Heart Lung Transplant. 31(10) , 1065–1072 (2012).
  • Stehlik J , EdwardsLB, KucheryavayaAY et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report – 2011. J. Heart Lung Transplant. 30(10) , 1078–1094 (2011).
  • Rieder M . New ways to detect adverse drug reactions in pediatrics. Pediatr. Clin. N. Am.59(5) , 1071–1092 (2012).
  • MacPhee IA , FredericksS, TaiT et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant. 4(6) , 914–919 (2004).
  • Undre NA , van Hooff J, Christiaans M et al. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant. Proc.31(1–2) , 296–298 (1999).
  • Kausman JY , PatelB, MarksSD. Standard dosing of tacrolimus leads to overexposure in pediatric renal transplantation recipients. Pediatr. Transplant.12(3) , 329–335 (2008).
  • Naesens M , SalvatierraO, LiL, KambhamN, ConcepcionW, SarwalM. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation85(8) , 1139–1145 (2008).
  • Zhao W , FakhouryM, Jacqz-AigrainE. Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther. Drug Monit.32(6) , 688–699 (2010).
  • Christians U , JacobsenW, BenetLZ, LampenA. Mechanisms of clinically relevant drug interactions associated with tacrolimus. Clin. Pharmacokinet.41(11) , 813–815 (2002).
  • Goto M , MasudaS, KiuchiT et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics14(7) , 471–478 (2004).
  • Haufroid V , WallemacqP, VanKerckhoveV et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am. J. Transplant.6(11) , 2706–2713 (2006).
  • Uesugi M , MasudaS, KatsuraT, OikeF, TakadaY, InuiK. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet. Genomics16(12) , 119–127 (2006).
  • Zhao W , ElieV, RousseyG et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin. Pharmacol. Ther. 86(6) , 609–618 (2009).
  • MacPhee IA , FredericksS, TaiT et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am. J. Transplant. 4(6) , 914–919 (2004).
  • Thervet E , LoriotMA, BarbierS et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin. Pharmacol. Ther. 87(6) , 721–726 (2010).
  • Gijsen V , MitalS, van Schaik RH et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J. Heart Lung Transplant.30(12) , 1352–1359 (2011).
  • Fanta S , NiemiM, JonssonS et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet. Genomics 18(2) , 77–90 (2008).
  • Ferraresso M , TuroloS, BelinghieriM et al. The potential of steroids and xenobiotic receptor polymorphisms in forecasting cyclosporine pharmacokinetic variability in young kidney tranpslant recipients. Pediatr. Transplant. 16 , 656–663 (2012).
  • Zhao W , FakhouryM, DeschenesG et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J. Clin. Pharmacol. 50(11) , 1280–1291 (2010).
  • Kirk R , EdwardsL, AuroraP et al. The Registry of the International Society for Heart and Lung Transplantation: Twelfth Pediatric Heart Transplantation Report – 2009. J. Heart Lung Transplant. 29(10) , 970–979 (2009).
  • Roche SL , KaufmannJ, DipchandAI, KantorPF. Hypertension after pediatric heart transplantation is primarily associated with immunosuppressive regimen. J. Heart Lung Transplant.27(5) , 501–507 (2008).
  • Roche SL , O‘SullivanJJ, KantorPF. Hypertension after pediatric cardiac transplantation: detection, etiology, implications and management. Pediatr. Transplant.14(2) , 159–168 (2010).
  • Brozena S , JohnsonM, VenturaH et al. Effectiveness and safety of diltiazem or lisinopril in treatment of hypertension after heart transplantation: results of a prospective, randomized multicenter trial. JACC 27(7) , 1707–1712 (1996).
  • Seeman T , SimkovaE, KreisingerJ et al. Control of hypertension in children after renal transplantation. Pediatr. Transplant. 10(3) , 316–322 (2006).
  • Ehret GB , MunroePB, RiceKM et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367) , 103–109 (2011).
  • Levy D , EhretGB, RiceK et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41(6) , 677–687 (2009).
  • Newton-Cheh C , JohnsonT, GatevaV et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41(6) , 666–676 (2009).
  • Johnson JA . Advancing management of hypertension through pharmacogenomics. Ann. Med.44(Suppl. 1) , S17–S22 (2012).
  • Bhatnagar V , GarciaEP, O‘ConnorDT et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African–American men and women with early hypertensive renal disease. Am. J. Nephrol.31(2) , 95–103 (2010).
  • Lynch AI , BoerwinkleE, DavisBR et al. Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA 299(3) , 296–307 (2008).
  • Mahle WT , VincentRN, BergAM, KanterKR. Pravastatin therapy is associated with reduction in coronary allograft vasculopathy in pediatric heart transplantation. J. Heart Lung Transplant.24(1) , 63–66 (2005).
  • Penson MG , FrickerFJ, ThompsonJR et al. Safety and efficacy of pravastatin therapy for the prevention of hyperlipidemia in pediatric and adolescent cardiac transplant recipients. J. Heart Lung Transplant. 20(6) , 611–618 (2001).
  • Chin C , GambergP, MilllerJ et al. Efficacy and safety of atorvastatin after pediatric heart transplantation. J. Heart Lung Transplant. 21(11) , 1213–1217 (2002).
  • Seipelt IM , CrawfordSE, RodgersS et al. Hypercholesterolemia is common after pediatric heart translantation: initial experience with pravastatin. J. Heart Lung Transplant. 23(3) , 317–322 (2004).
  • Hedman M , NeuvonenPJ, HolmbergM et al. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regiment of triple immunosuppression. Clin. Pharmacol. Ther. 75(1) , 101–109 (2004).
  • Exper panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics128(Suppl. 5) , S213–S256 (2011).
  • Kwiterovich PO , GiddingSS. Universal screening of cholesterol in children. Clin. Cardiol.35(11) , 662–664 (2012).
  • Lipshultz SE , SchaechterJ, CarrilloA et al. Can the consequences of univesal cholesterol screening during childhood prevent cardiovascular disease and thus reduce long-term health care costs? Pediatr. Endocrinol. Rev. 9(4) , 698–705 (2012).
  • The SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy – a genome wide study. N. Engl. J. Med.359(8) , 789–799 (2008).
  • Wagner J , LeederJS. Pediatric pharmacogenomics: a systematic assessment of ontogeny and genetic variation to guide the design of statin studies in children. Pediatr. Clin. N. Am.59(5) , 1017–1037 (2012).
  • Hedman M , AntikainenM, HolmbergC et al. Pharmacokinetics and response to pravastatin in paediatric patients with familial hypercholesterolaemia and in paediatric cardiac transplant recipients in relation to polymorphisms of the SLCO1B1 and ABCB1 genes. Br. J. Clin. Pharmacol. 61(6) , 706–715 (2006).
  • Boso V , HerreroMJ, BeaS et al. Increased hospital stay and allograft disfunction in renal transplant recipients with Cyp2c19 AA variant in SNP rs4244285. Drug Metab. Dispos. 41(2) , 480–487 (2013).
  • Zeevi A , LunzJG, ShapiroR et al. Emerging role of donor-specific anti-human leukocyte antigen antibody determination for clinical management after solid organ transplantation. Hum. Immunol. 70(8) , 645–650 (2009).
  • Schonder KS , MazariegosGV, WeberRJ. Adverse effects of immunosuppression in pediatric solid organ transplantation. Pediatr. Drugs12(1) , 35–49 (2010).
  • Taegtmeyer AB , BreenJB, RogersP et al. Effect of adenosine monophosphate deaminase-1 C34T allele on the requirement for donor inotropic support and on the incidence of early graft dysfunction after cardiac transplantation. Am. J. Cardiol. 103(10) , 1457–1462 (2009).
  • Auerbach SR , ManlhiotC, ReddyS et al. Recipient genotype is a predictor of allograft cytokine expression and outcomes after pediatric cardiac transplantation. J. Am. Coll. Cardiol. 53(20) , 1909–1917 (2009).
  • Daly KP , MarshallAC, VincentJA et al. Endomyocardial biopsy and selective coronary angiography are low-risk procedures in pediatric heart transplant recipients: results of a multicenter experience. J. Heart Lung Transplant. 31(4) , 398–409 (2010).
  • Mehta R , LeeKJ, ChaturvediR, BensonL. Complications of pediatric cardiac catheterization: a review in the current era. Catheter Cardiovasc. Interv.72 , 278–285 (2008).
  • Pham MX , TeutebergJJ, KfouryAG et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N. Engl. J. Med. 362(20) , 1890–1900 (2010).
  • Evans RW , WilliamsGE, BaronHM et al. The economic implications of noninvasive molecular testing for cardiac allograft rejection. Am. J. Transplant. 5(6) , 1553–1558 (2005).
  • Mital S , BernsteinD, WebberS et al. Molecular testing for cardiac allograft rejection in children: a multicenter study. Circulation 112(17) , II–419 (A2037) (2005).
  • Snyder TM , KhushKK, ValantineHA, QuakeSR. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl Acad. Sci. USA108(15) , 6229–6234 (2011).
  • Manickaraj AK , MitalS. Personalized medicine in pediatric cardiology: do little changes make a big difference? Curr. Opin. Pediatr.24(5) , 584–591 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.