106
Views
0
CrossRef citations to date
0
Altmetric
Special Report

The Diagnostic Role and Clinical Relevance of Determination of Braf Status in Brain Tumors

&
Pages 405-412 | Published online: 06 Jun 2013

References

  • WHO. WHO Classification of Tumours of the Central Nervous System. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (Eds). IARC Press, Lyon, France (2007).
  • Nikiforova MN , HamiltonRL. Molecular diagnostics of gliomas. Arch. Pathol. Lab. Med.135 , 558–565 (2011).
  • Rodriguez FJ , LimKS, BowersD, EberhartCG. Pathological and molecular advances in pediatric low-grade astrocytoma. Annu. Rev. Pathol.8 , 361–379 (2013).
  • Horbinski C . To BRAF or not to BRAF: is that even a question anymore? Neuropathol. Exp. Neurol.72(1) , 2–7 (2013).
  • Caronia M , PhayJE, ShahMH. Role of BRAF in thyroid oncogenesis. Clin. Cancer Res.17(24) , 7511–7517 (2011).
  • Flaherty KT , McArthurG. BRAF, a target in melanoma: implications for solid tumor drug development. Cancer116(21) , 4902–4913 (2010).
  • Wan PT , GarnettMJ, RoeSM et al. Cancer Genome Project. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116 , 855–867 (2004).
  • Davies H , BignellGR, CoxC et al. Mutations of the BRAF gene in human cancer. Nature 417 , 949–954 (2002).
  • Arcaini L , ZibelliniS, BoveriE et al. The BRAF V600E mutation in hairy cell leukemia and other mature B-cell neoplasms. Blood 119(1) , 188–191 (2012).
  • Pollock PM , MeltzerPS. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell2(1) , 5–7 (2002).
  • Vaughn CP , ZobellSD, FurtadoLV, BakerCL, SamowitzWS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer50(5) , 307–312 (2011).
  • Cho NY , ChoiM, KimBH, ChoYM, MoonKC, KangG. BRAF and KRAS mutations in prostatic adenocarcinoma. Int. J. Cancer119(8) , 1858–1862 (2006).
  • Singer G , OldtR 3rd, Cohen Y et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst.95(6) , 484–486 (2003).
  • Tannapfel A , SommererF, BenickeM et al. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52(5) , 706–712 (2003).
  • Dougherty MJ , SantiM, BroseMS et al. Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro. Oncol. 12(7) , 621–630 (2010).
  • Schindler G , CapperD, MeyerJ et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 121(3) , 397–405 (2011).
  • Myung JK , ChoH, ParkCK et al. Analysis of the BRAF (V600E) mutation in central nervous system tumors. Transl. Oncol. 5(6) , 430–436 (2012).
  • Basto D , TroviscoV, LopesJM et al. Mutation analysis of BRAF gene in human gliomas. Acta Neuropathol. 109(2) , 207–210 (2005).
  • Koelsche C , WöhrerA, JeibmannA et al. Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta Neuropathol. doi:10.1007/s00401-013-1100-2 (2013) (Epub ahead of print).
  • Dias-Santagata D , LamQ, VernovskyK et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS ONE6(3) , e17948 (2011).
  • Schmidt Y , Kleinschmidt-DemastersBK, AisnerDL, LilleheiKO, DamekD. Anaplastic PXA in adults: case series with clinicopathologic and molecular features. J. Neurooncol.111(1) , 59–69 (2013).
  • Chappé C , PadovaniL, ScavardaD et al. Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAFV600E mutation and CD34 expression. Brain Pathol. doi:10.1111/bpa.12048 (2013) (Epub ahead of print).
  • Gessi M , HammesJ, LauriolaL et al. GNA11 and N-RAS mutations: alternatives for MAPK pathway activating GNAQ mutations in primary melanocytic tumours of the central nervous system. Neuropathol. Appl. Neurobiol.39(4) , 417–425 (2012).
  • Jones DT , GronychJ, LichterP, WittO, PfisterSM. MAPK pathway activation in pilocytic astrocytoma. Cell. Mol. Life Sci.69(11) , 1799–1811 (2012).
  • Sharma MK , ZehnbauerBA, WatsonMA, GutmannDH. RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. Neurology65(8) , 1335–1336 (2005).
  • Kluwe L , HagelC, TatagibaM et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J. Neuropathol. Exp. Neurol. 60(9) , 917–920 (2001).
  • Wimmer K , EckartM, Meyer-PuttlitzB, FonatschC, PietschT. Mutational and expression analysis of the NF1 gene argues against a role as tumor suppressor in sporadic pilocytic astrocytomas. J. Neuropathol. Exp. Neurol.61(10) , 896–902 (2002).
  • Pfister S , JanzarikWG, RemkeM et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J. Clin. Investig.118(5) , 1739–1749 (2008).
  • Jacob K , AlbrechtS, SollierC et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br. J. Cancer 101 , 722–733 (2009).
  • Bar EE , LinA, TihanT et al. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J. Neuropathol. Exp. Neurol. 67(9) , 878–887 (2008).
  • Jones DT , KocialkowskiS, LiuL et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 68(21) , 8673–8677 (2008).
  • Sievert AJ , JacksonEM, GaiX et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 19(3) , 449–458 (2009).
  • Lin A , RodriguezFJ, KarajannisMA et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J. Neuropathol. Exp. Neurol. 71(1) , 66–72 (2012).
  • Tatevossian RG , LawsonAR, ForshewT, HindleyGF, EllisonDW, SheerD. MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J. Cell. Physiol.222(3) , 509–514 (2010).
  • Hawkins C , WalkerE, MohamedN et al. BRAF–KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin. Cancer Res. 17(14) , 4790–4798 (2012).
  • Forshew T , TatevossianRG, LawsonAR et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J. Pathol. 218(2) , 172–181 (2009).
  • Jones DT , KocialkowskiS, LiuL, PearsonDM, IchimuraK, CollinsVP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene28(20) , 2119–2123 (2009).
  • Cin H , MeyerC, HerrR et al. Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 121(6) , 763–774 (2011).
  • Sharma MK , MansurDB, ReifenbergerG et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res. 67(3) , 890–900 (2007).
  • Tihan T , ErsenA, QaddoumiI et al. Pathologic characteristics of pediatric intracranial pilocytic astrocytomas and their impact on outcome in 3 countries: a multi-institutional study. Am. J. Surg. Pathol. 36(1) , 43–55 (2012).
  • Hasselblatt M , RiesmeierB, LechtapeB et al. BRAF–KIAA1549 fusion transcripts are less frequent in pilocytic astrocytomas diagnosed in adults. Neuropathol. Appl. Neurobiol. 37(7) , 803–806 (2011).
  • Lawson AR , TatevossianRG, PhippsKP et al. RAF gene fusions are specific to pilocytic astrocytoma in a broad paediatric brain tumour cohort. Acta Neuropathol.120(2) , 271–273 (2010).
  • Korshunov A , MeyerJ, CapperD et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol. 118(3) , 401–405 (2009).
  • Badiali M , GleizeV, ParisS et al. KIAA1549–BRAF fusions and IDH mutations can coexist in diffuse gliomas of adults. Brain Pathol. 22(6) , 841–847 (2012).
  • Kim YH , NonoguchiN, PaulusW et al. Frequent BRAF gain in low-grade diffuse gliomas with 1p/19q loss. Brain Pathol. 22(6) , 834–840 (2012).
  • Gielen GH , GessiM, Hammes et al. H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am. J. Clin. Pathol.39(3) , 345–349 (2013).
  • Capper D , BerghoffAS, von Deimling A, Preusser M. Clinical neuropathology practice news 2–2012: BRAF V600E testing. Clin. Neuropathol.31(2) , 64–66 (2012).
  • Horbinski C , HamiltonRL, NikiforovY, PollackIF. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol.119 , 641–649 (2010).
  • Colin C , PadovaniL, ChappéC et al. Outcome analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single institution. Neuropathol. Appl. Neurobiol. doi:10.1111/nan.12013 (2012) (Epub ahead of print).
  • Ziai J , HuiP. BRAF mutation testing in clinical practice. Expert Rev. Mol. Diagn.12(2) , 127–138 (2012).
  • Spittle C , WardMR, NathansonKL et al. Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. Mol. Diagn. 9(4) , 464–741 (2007).
  • Ney JT , FroehnerS, RoeslerA, BuettnerR, Merkelbach-BruseS. High-resolution melting analysis as a sensitive prescreening diagnostic tool to detect KRAS, BRAF, PIK3CA, and AKT1 mutations in formalin-fixed, paraffin-embedded tissues. Arch. Pathol. Lab. Med.136(9) , 983–992 (2012).
  • Hömig-Hölzel C , SavolaS. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Mol. Pathol.21(4) , 189–206 (2012).
  • Capper D , PreusserM, HabelA et al. Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol. 122(1) , 11–19 (2011).
  • Capper D , BerghoffAS, MagerleM et al. Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol. 123(2) , 223–233 (2012).
  • Busam KJ , HedvatC, PulitzerM et al. Immunohistochemical analysis of BRAF(V600E) expression of primary and metastatic melanoma and comparison with mutation status and melanocyte differentiation antigens of metastatic lesions. Am. J. Surg. Pathol. 37(3) , 413–420 (2013).
  • von Deimling A , KorshunovA, HartmannC. The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol.21(1) , 74–87 (2011).
  • Tian Y , RichBE, VenaN et al. Detection of KIAA1549–BRAF fusion transcripts in formalin-fixed paraffin-embedded pediatric low-grade gliomas. J. Mol. Diagn. 13 , 669–677 (2011).
  • Setty P , GessiM, WahaA et al. Sensitive determination of BRAF copy number in clinical samples by pyrosequencing. Diagn. Mol. Pathol. 20 , 148–157 (2011).
  • Santarpia L , LippmanSM, El-NaggarAK. Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets16(1) , 103–119 (2012).
  • Lee EQ , KuhnJ, LambornKR et al. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05–02. Neuro. Oncol. 14(12) , 1511–1518 (2012).
  • Peereboom DM , AhluwaliaMS, YeX et al. New approaches to brain tumor therapy (NABTT) consortium NABTT 0502: a Phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro. Oncol. 15(4) , 490–496 (2013).
  • Reardon DA , VredenburghJJ, DesjardinsA et al. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a Phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J. Neurooncol. 101(1) , 57–66 (2011).
  • Den RB , KamravaM, ShengZ et al. A Phase I study of the combination of sorafenib with temozolomide and radiation therapy for the treatment of primary and recurrent high-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 285(2) , 321–328 (2013).
  • Karajannis MA , FischerMJ, MillalSS et al. Phase II study of sorafenib in children with recurrent/progressive low-grade astrocytoma. Neuro. Oncol. 14(Suppl. 6) , S101 (2012).
  • Soffietti R , TrevisanE, RudàR. Targeted therapy in brain metastasis. Curr. Opin. Oncol.24(6) , 679–686 (2012).
  • Chapman PB , HauschildA, RobertC et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364(26) , 2507–2516 (2012).
  • Long GV , TrefzerU, DaviesMA et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, Phase 2 trial. Lancet Oncol. 13(11) , 1087–1095 (2012).
  • Gessi M , LambertSR, LauriolaL, WahaA, CollinsVP, PietschT. Absence of KIAA1549-BRAF fusion in rosette-forming glioneuronal tumors of the fourth ventricle (RGNT). J. Neurooncol.110(1) , 21–25 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.