25
Views
0
CrossRef citations to date
0
Altmetric
Review

Learning New Tricks from an Old Dog: Using Experimental Autoimmune Encephalomyelitis to Study Comorbid Symptoms in Multiple Sclerosis

, &
Pages 571-576 | Published online: 02 Nov 2011

Bibliography

  • Nikic I , MerklerD, SorbaraC et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17(4) , 495–499 (2011).
  • Ouardouz M , CoderreE, BasakA et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann. Neurol. 65(2) , 151–159 (2009).
  • Ouardouz M , CoderreE, ZamponiGW et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann. Neurol. 65(2) , 160–166 (2009).
  • Trapp BD , PetersonJ, RansohoffRM, RudickR, MorkS, BoL. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338(5) , 278–285 (1998).
  • Osterberg A , BoivieJ, ThuomasKA. Central pain in multiple sclerosis–prevalence and clinical characteristics. Eur. J. Pain9(5) , 531–542 (2005).
  • Svendsen KB , JensenTS, HansenHJ, BachFW. Sensory function and quality of life in patients with multiple sclerosis and pain. Pain114(3) , 473–481 (2005).
  • O‘Connor AB , SchwidSR, HerrmannDN, MarkmanJD, DworkinRH. Pain associated with multiple sclerosis: systematic review and proposed classification. Pain137(1) , 96–111 (2008).
  • Indaco A , IachettaC, NappiC, SocciL, CarrieriPB. Chronic and acute pain syndromes in patients with multiple sclerosis. Acta Neurol. (Napoli)16(3) , 97–102 (1994).
  • Svendsen KB , JensenTS, OvervadK, HansenHJ, Koch-HenriksenN, BachFW. Pain in patients with multiple sclerosis: a population-based study. Arch. Neurol.60(8) , 1089–1094 (2003).
  • Denic A , JohnsonAJ, BieberAJ, WarringtonAE, RodriguezM, PirkoI. The relevance of animal models in multiple sclerosis research. Pathophysiology18(1) , 21–29 (2011).
  • Owens T , SriramS. The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. Neurol. Clin.13(1) , 51–73 (1995).
  • Bradl M , HohlfeldR. Molecular pathogenesis of neuroinflammation. J. Neurol. Neurosurg. Psychiatry74(10) , 1364–1370 (2003).
  • Baxter AG . The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol.7(11) , 904–912 (2007).
  • Steinman L , ZamvilSS. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol.60(1) , 12–21 (2006).
  • Berard JL , WolakK, FournierS, DavidS. Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia58(4) , 434–445 (2010).
  • Aicher SA , SilvermanMB, WinklerCW, BeboBF Jr. Hyperalgesia in an animal model of multiple sclerosis. Pain110(3) , 560–570 (2004).
  • Lynch JL , GallusNJ, EricsonME, BeitzAJ. Analysis of nociception, sex and peripheral nerve innervation in the TMEV animal model of multiple sclerosis. Pain136(3) , 293–304 (2008).
  • Olechowski CJ , TruongJJ, KerrBJ. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain141(1–2) , 156–164 (2009).
  • Rodrigues DH , SachsD, TeixeiraAL. Mechanical hypernociception in experimental autoimmune encephalomyelitis. Arq. Neuropsiquiatr.67(1) , 78–81 (2009).
  • Olechowski CJ , ParmarA, MillerB et al. A diminished response to formalin stimulation reveals a role for the glutamate transporters in the altered pain sensitivity of mice with experimental autoimmune encephalomyelitis (EAE). Pain 149(3) , 565–572 (2010).
  • Vercellino M , MerolaA, PiacentinoC et al. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J. Neuropathol. Exp. Neurol. 66(8) , 732–739 (2007).
  • Werner P , PittD, RaineCS. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann. Neurol.50(2) , 169–180 (2001).
  • Binns BC , HuangY, GoettlVM, HackshawKV, StephensRL Jr. Glutamate uptake is attenuated in spinal deep dorsal and ventral horn in the rat spinal nerve ligation model. Brain Res.1041(1) , 38–47 (2005).
  • Sung B , LimG, MaoJ. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci.23(7) , 2899–2910 (2003).
  • Tao YX , GuJ, StephensRL Jr. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states. Mol. Pain1 , 30 (2005).
  • Rothstein JD , PatelS, ReganMR et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021) , 73–77 (2005).
  • Ramos KM , LewisMT, MorganKN et al. Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169(4) , 1888–1900 (2010).
  • Thibault K , CalvinoB, PezetS. Characterisation of sensory abnormalities observed in an animal model of multiple sclerosis: a behavioural and pharmacological study. Eur. J. Pain15(3) , 231.E1–E16 (2011).
  • Sloane E , LedeboerA, SeibertW et al. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav. Immun. 23(1) , 92–100 (2009).
  • Melanson M , MiaoP, EisenstatD et al. Experimental autoimmune encephalomyelitis-induced upregulation of tumor necrosis factor-α in the dorsal root ganglia. Mult. Scler. 15(10) , 1135–1145 (2009).
  • Schafers M , LeeDH, BrorsD, YakshTL, SorkinLS. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-α after spinal nerve ligation. J. Neurosci.23(7) , 3028–3038 (2003).
  • Schafers M , SvenssonCI, SommerC, SorkinLS. Tumor necrosis factor-α induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci.23(7) , 2517–2521 (2003).
  • Pollak Y , OrionE, GoshenI, OvadiaH, YirmiyaR. Experimental autoimmune encephalomyelitis-associated behavioral syndrome as a model of ‘depression due to multiple sclerosis‘. Brain Behav. Immun.16(5) , 533–543 (2002).
  • Pollak Y , OvadiaH, GoshenI et al. Behavioral aspects of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 104(1) , 31–36 (2000).
  • Dantzer R . Cytokine-induced sickness behavior: mechanisms and implications. Ann. NY Acad. Sci.933 , 222–234 (2001).
  • Dantzer R , O‘ConnorJC, FreundGG, JohnsonRW, KelleyKW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci.9(1) , 46–56 (2008).
  • Maes M . Evidence for an immune response in major depression: a review and hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry19(1) , 11–38 (1995).
  • Musgrave T , BensonC, WongG et al. The MAO inhibitor phenelzine improves functional outcomes in mice with experimental autoimmune encephalomyelitis (EAE). Brain Behav. Immun. 25(8) , 1677–1688 (2011).
  • Pollak Y , OvadiaH, OrionE, WeidenfeldJ, YirmiyaR. The EAE-associated behavioral syndrome: I. Temporal correlation with inflammatory mediators. J. Neuroimmunol.137(1–2) , 94–99 (2003).
  • Sakic B , SzechtmanH, DenburgJA. Neurobehavioral alterations in autoimmune mice. Neurosci. Biobehav. Rev.21(3) , 327–340 (1997).
  • Sakic B , SzechtmanH, TalangbayanH, DenburgSD, CarbotteRM, DenburgJA. Disturbed emotionality in autoimmune MRL-lpr mice. Physiol. Behav.56(3) , 609–617 (1994).
  • Szechtman H , SakicB, DenburgJA. Behaviour of MRL mice: an animal model of disturbed behaviour in systemic autoimmune disease. Lupus6(3) , 223–229 (1997).
  • Pollak Y , OvadiaH, OrionE, YirmiyaR. The EAE-associated behavioral syndrome: II. Modulation by anti-inflammatory treatments. J. Neuroimmunol.137(1–2) , 100–108 (2003).
  • Baker GB , SowaB, ToddKG. Amine oxidases and their inhibitors: what can they tell us about neuroprotection and the development of drugs for neuropsychiatric disorders? J. Psychiatry Neurosci.32(5) , 313–315 (2007).
  • McManus DJ , BakerGB, MartinIL, GreenshawAJ, MckennaKF. Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and GABA-transaminase activity in rat brain. Biochem. Pharmacol.43(11) , 2486–2489 (1992).
  • Todd KG , BakerGB. GABA-elevating effects of the antidepressant/antipanic drug phenelzine in brain: effects of pretreatment with tranylcypromine, (-)-deprenyl and clorgyline. J. Affect. Disord.35(3) , 125–129 (1995).
  • Bourin M , HascoetM, ColombelMC, CouttsRT, BakerGB. Clonidine potentiates the effects of tranylcypromine, phenelzine and two analogues in the forced swimming test in mice. J. Psychiatry Neurosci.27(3) , 178–185 (2002).
  • Maki Y , InoueT, IzumiT et al. Monoamine oxidase inhibitors reduce conditioned fear stress-induced freezing behavior in rats. Eur. J. Pharmacol. 406(3) , 411–418 (2000).
  • Griebel G , CuretO, PerraultG, SangerDJ. Behavioral effects of phenelzine in an experimental model for screening anxiolytic and anti-panic drugs: correlation with changes in monoamine-oxidase activity and monoamine levels. Neuropharmacology37(7) , 927–935 (1998).
  • Paslawski T , TreitD, BakerGB, GeorgeM, CouttsRT. The antidepressant drug phenelzine produces antianxiety effects in the plus-maze and increases in rat brain GABA. Psychopharmacology (Berl.)127(1) , 19–24 (1996).
  • Zhao Z , ZhangHT, BootzinE, MillanMJ, O‘DonnellJM. Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Neuropsychopharmacology34(6) , 1467–1481 (2009).
  • Bhat R , AxtellR, MitraA et al. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl Acad. Sci. USA 107(6) , 2580–2585 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.