31
Views
0
CrossRef citations to date
0
Altmetric
Review

Capturing Brain Metrics of Neuropathic Pain Using Nuclear Magnetic Resonance

&
Pages 395-409 | Published online: 05 Sep 2013

References

  • Woolf CJ , MannionRJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet353(9168) , 1959–1964 (1999).
  • Nicholson B , VermaS. Comorbidities in chronic neuropathic pain. Pain Med.5(Suppl. 1) , S9–S27 (2004).
  • Torrance N , SmithBH, BennettMI, LeeAJ. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J. Pain7(4) , 281–289 (2006).
  • Bouhassira D , Lantéri-MinetM, AttalN, LaurentB, TouboulC. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain136(3) , 380–387 (2008).
  • Kehlet H , JensenTS, WoolfCJ. Persistent postsurgical pain: risk factors and prevention. Lancet367(9522) , 1618–1625 (2006).
  • Borsook D , KussmanBD, GeorgeE, BecerraLR, BurkeDW. Surgically induced neuropathic pain: understanding the perioperative process. Ann. Surg.257(3) , 403–412 (2013).
  • Woolf CJ . Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann. Intern. Med.140(6) , 441–451 (2004).
  • Krause SJ , BackonjaMM. Development of a neuropathic pain questionnaire. Clin. J. Pain19(5) , 306–314 (2003).
  • Freynhagen R , BaronR, GockelU, TölleTR. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr. Med. Res. Opin.22(10) , 1911–1920 (2006).
  • Portenoy R . Development and testing of a neuropathic pain screening questionnaire: ID Pain. Curr. Med. Res. Opin.22(8) , 1555–1565 (2006).
  • Bouhassira D , AttalN, FermanianJ et al. Development and validation of the Neuropathic Pain Symptom Inventory. Pain 108(3) , 248–257 (2004).
  • Cruccu G , SommerC, AnandP et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur. J. Neurol. 17(8) , 1010–1018 (2010).
  • Haanpää ML , BackonjaMM, BennettMI et al. Assessment of neuropathic pain in primary care. Am. J. Med. 122(Suppl. 10) , S13–S21 (2009).
  • Apkarian AV , BushnellMC, TreedeRD, ZubietaJK. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain9(4) , 463–484 (2005).
  • May A . Chronic pain may change the structure of the brain. Pain137(1) , 7–15 (2008).
  • Gage FH . Neurogenesis in the adult brain. J. Neurosci.22(3) , 612–613 (2002).
  • Zatorre RJ , FieldsRD, Johansen-BergH. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci.15(4) , 528–536 (2012).
  • May A . Structure equals function: cortical correlates of pain. Pain153(8) , 1551–1552 (2012).
  • Watkins LR , MaierSF, GoehlerLE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain63(3) , 289–302 (1995).
  • Guo LH , SchluesenerHJ. The innate immunity of the central nervous system in chronic pain: the role of Toll-like receptors. Cell. Mol. Life Sci.64(9) , 1128–1136 (2007).
  • DeLeo JA , TangaFY, TawfikVL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist10(1) , 40–52 (2004).
  • Szabó N , KincsesZT, PárdutzA et al. White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain 153(3) , 651–656 (2012).
  • Chen JY , BlanksteinU, DiamantNE, DavisKD. White matter abnormalities in irritable bowel syndrome and relation to individual factors. Brain Res.1392 , 121–131 (2011).
  • Moayedi M , Weissman-FogelI, SalomonsTV et al. White matter brain and trigeminal nerve abnormalities in temporomandibular disorder. Pain 153(7) , 1467–1477 (2012).
  • Geha PY , BalikiMN, HardenRN, BauerWR, ParrishTB, ApkarianAV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron60(4) , 570–581 (2008).
  • Davis KD , MoayediM. Central mechanisms of pain revealed through functional and structural MRI. J. Neuroimmune Pharmacol.8(3) , 518–534 (2012).
  • Greicius MD , KrasnowB, ReissAL, MenonV. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA100(1) , 253–258 (2003).
  • Raichle ME , MacLeodAM, SnyderAZ, PowersWJ, GusnardDA, ShulmanGL. A default mode of brain function. Proc. Natl Acad. Sci. USA98(2) , 676–682 (2001).
  • Baliki MN , GehaPY, ApkarianAV, ChialvoDR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci.28(6) , 1398–1403 (2008).
  • Napadow V , LaCountL, ParkK, As-SanieS, ClauwDJ, HarrisRE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum.62(8) , 2545–2555 (2010).
  • Wasan AD , LoggiaML, ChenLQ, NapadowV, KongJ, GollubRL. Neural correlates of chronic low back pain measured by arterial spin labeling. Anesthesiology115(2) , 364–374 (2011).
  • Loggia ML , KimJ, GollubRL et al. Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain 154(1) , 24–33 (2013).
  • Liu J , HaoY, DuM et al. Quantitative cerebral blood flow mapping and functional connectivity of postherpetic neuralgia pain: a perfusion fMRI study. Pain 154(1) , 110–118 (2013).
  • Honey CJ , SpornsO, CammounL et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106(6) , 2035–2040 (2009).
  • Eickhoff SB , JbabdiS, CaspersS et al. Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J. Neurosci. 30(18) , 6409–6421 (2010).
  • Mars RB , JbabdiS, SalletJ et al. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 31(11) , 4087–4100 (2011).
  • Smith SM , FoxPT, MillerKL et al. Correspondence of the brain‘s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106(31) , 13040–13045 (2009).
  • Behrens TEJ , Johansen-BergH. Relating connectional architecture to grey matter function using diffusion imaging. Philos. Trans. R. Soc. Lond. B. Biol. Sci.360(1457) , 903–911 (2005).
  • Sullivan MD , CahanaA, DerbyshireS, LoeserJD. What does it mean to call chronic pain a brain disease? J. Pain14(4) , 317–322 (2013).
  • Robinson ME , StaudR, PriceDD. Pain measurement and brain activity: will neuroimages replace pain ratings? J. Pain14(4) , 323–327 (2013).
  • Mayberg HS , LozanoAM, VoonV et al. Deep brain stimulation for treatment-resistant depression. Neuron 45(5) , 651–660 (2005).
  • Chapin H , BagarinaoE, MackeyS. Real-time fMRI applied to pain management. Neurosci. Lett.520(2) , 174–181 (2012).
  • Judenhofer MS , WehrlHF, NewportDF et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat. Med. 14(4) , 459–465 (2008).
  • Costigan M , ScholzJ, WoolfCJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci.32 , 1–32 (2009).
  • Baron R . Peripheral neuropathic pain: from mechanisms to symptoms. Clin. J. Pain16(Suppl. 6) , S12–S20 (2000).
  • Hsieh JC , BelfrageM, Stone-ElanderS, HanssonP, IngvarM. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain63(2) , 225–236 (1995).
  • Iadarola MJ , MaxMB, BermanKF et al. Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 63(1) , 55–64 (1995).
  • Fukumoto M , UshidaT, ZinchukVS, YamamotoH, YoshidaS. Contralateral thalamic perfusion in patients with reflex sympathetic dystrophy syndrome. Lancet354(9192) , 1790–1791 (1999).
  • Bowsher D . Central post-stroke (‘thalamic syndrome‘) and other central pains. Am. J. Hosp. Palliat. Care16(4) , 593–597 (1999).
  • Borsook D , MoultonEA, PendseG et al. Comparison of evoked vs. spontaneous tics in a patient with trigeminal neuralgia (tic doloureux). Mol. Pain 3 , 34 (2007).
  • Geha PY , BalikiMN, WangX, HardenRN, PaiceJA, ApkarianAV. Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain138(3) , 641–656 (2008).
  • Baliki MN , GehaPY, ApkarianAV. Spontaneous pain and brain activity in neuropathic pain: functional MRI and pharmacologic functional MRI studies. Curr. Pain Headache Rep.11(3) , 171–177 (2007).
  • Peyron R , García-LarreaL, GrégoireMC et al. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 84(1) , 77–87 (2000).
  • Garcia-Larrea L , MaarrawiJ, PeyronR et al. On the relation between sensory deafferentation, pain and thalamic activity in Wallenberg‘s syndrome: a PET-scan study before and after motor cortex stimulation. Eur. J. Pain 10(8) , 677–688 (2006).
  • Duncan GH , KupersRC, MarchandS, VillemureJG, GybelsJM, BushnellMC. Stimulation of human thalamus for pain relief: possible modulatory circuits revealed by positron emission tomography. J. Neurophysiol.80(6) , 3326–3330 (1998).
  • Kishima H , SaitohY, OshinoS et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. Neuroimage 49(3) , 2564–2569 (2010).
  • Willoch F , GamringerU, MedeleR, SteudeU, TölleTR. Analgesia by electrostimulation of the trigeminal ganglion in patients with trigeminopathic pain: a PET activation study. Pain103(1–2) , 119–130 (2003).
  • Becerra L , MorrisS, BazesS et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J. Neurosci. 26(42) , 10646–10657 (2006).
  • DaSilva AF , BecerraL, PendseG, ChizhB, TullyS, BorsookD. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS ONE3(10) , e3396 (2008).
  • Ducreux D , AttalN, ParkerF, BouhassiraD. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain129(Pt 4) , 963–976 (2006).
  • Maihöfner C , HandwerkerHO, BirkleinF. Functional imaging of allodynia in complex regional pain syndrome. Neurology66(5) , 711–717 (2006).
  • Schweinhardt P , GlynnC, BrooksJ et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32(1) , 256–265 (2006).
  • Peyron R , SchneiderF, FaillenotI et al. An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 63(10) , 1838–1846 (2004).
  • Kim JH , GreenspanJD, CoghillRC, OharaS, LenzFA. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J. Neurosci.27(18) , 4995–5004 (2007).
  • Petrovic P , IngvarM, Stone-ElanderS, PeterssonKM, HanssonP. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain83(3) , 459–470 (1999).
  • Peyron R , García-LarreaL, GrégoireMC et al. Allodynia after lateral-medullary (Wallenberg) infarct. A PET study. Brain 121(Pt 2) , 345–356 (1998).
  • Witting N , KupersRC, SvenssonP, JensenTS. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain120(1–2) , 145–154 (2006).
  • Lebel A , BecerraL, WallinD et al. fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain 131(Pt 7) , 1854–1879 (2008).
  • Maihöfner C , ForsterC, BirkleinF, NeundörferB, HandwerkerHO. Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain114(1–2) , 93–103 (2005).
  • Freund W , WunderlichAP, StuberG et al. Different activation of opercular and posterior cingulate cortex (PCC) in patients with complex regional pain syndrome (CRPS I) compared with healthy controls during perception of electrically induced pain: a functional MRI study. Clin. J. Pain 26(4) , 339–347 (2010).
  • Freund W , WunderlichAP, StuberG et al. The role of periaqueductal gray and cingulate cortex during suppression of pain in complex regional pain syndrome. Clin. J. Pain 27(9) , 796–804 (2011).
  • Segerdahl AR , XieJ, PatersonK, RamirezJD, TraceyI, BennettDLH. Imaging the neural correlates of neuropathic pain and pleasurable relief associated with inherited erythromelalgia in a single subject with quantitative arterial spin labelling. Pain153(5) , 1122–1127 (2012).
  • Abarca-Olivas J , Feliu-ReyE, SempereAP et al. [Volumetric measurement of the posterior fossa and its components using magnetic resonance imaging in idiopathic trigeminal neuralgia]. Rev. Neurol. 51(9) , 520–524 (2010).
  • Chen J , Guo Z-Y, Liang Q-Z et al. Structural abnormalities of trigeminal root with neurovascular compression revealed by high resolution diffusion tensor imaging. Asian Pac. J. Trop. Med.5(9) , 749–752 (2012).
  • Liu Y , LiJ, ButzkuevenH et al. Microstructural abnormalities in the trigeminal nerves of patients with trigeminal neuralgia revealed by multiple diffusion metrics. Eur. J. Radiol. 82(5) , 783–786 (2012).
  • Apkarian AV , SosaY, SontyS et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24(46) , 10410–10415 (2004).
  • Baliki MN , SchnitzerTJ, BauerWR, ApkarianAV. Brain morphological signatures for chronic pain. PLoS ONE6(10) , e26010 (2011).
  • Gustin SM , PeckCC, WilcoxSL, NashPG, MurrayGM, HendersonLA. Different pain, different brain: thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes. J. Neurosci.31(16) , 5956–5964 (2011).
  • Wu Q , InmanRD, DavisKD. Neuropathic pain in ankylosing spondylitis – a psychophysics and brain imaging study. Arthritis Rheum.65(6) , 1494–1503 (2013).
  • Seminowicz DA , WidemanTH, NasoL et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J. Neurosci. 31(20) , 7540–7550 (2011).
  • Rodriguez-Raecke R , NiemeierA, IhleK, RuetherW, MayA. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci.29(44) , 13746–13750 (2009).
  • Younger JW , ChuLF, D‘ArcyNT, TrottKE, JastrzabLE, MackeySC. Prescription opioid analgesics rapidly change the human brain. Pain152(8) , 1803–1810 (2011).
  • Upadhyay J , MalekiN, PotterJ et al. Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain 133(Pt 7) , 2098–2114 (2010).
  • Vincent JL , PatelGH, FoxMD et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140) , 83–86 (2007).
  • Smith SM , MillerKL, MoellerS et al. Temporally-independent functional modes of spontaneous brain activity. Proc. Natl Acad. Sci. USA 109(8) , 3131–3136 (2012).
  • Raichle ME , SnyderAZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage37(4) , 1083–1090 (2007).
  • Tagliazucchi E , BalenzuelaP, FraimanD, ChialvoDR. Brain resting state is disrupted in chronic back pain patients. Neurosci. Lett.485(1) , 26–31 (2010).
  • Cauda F , SaccoK, DucaS et al. Altered resting state in diabetic neuropathic pain. PLoS ONE 4(2) , e4542 (2009).
  • Cauda F , D‘AgataF, SaccoK et al. Altered resting state attentional networks in diabetic neuropathic pain. J. Neurol. Neurosurg. Psychiatry 81(7) , 806–811 (2010).
  • Cauda F , SaccoK, D‘AgataF et al. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci. 10 , 138 (2009).
  • Becerra L , SchwartzmanRJ, KieferRT et al. CNS Measures of pain responses pre- and post-anesthetic ketamine in a patient with complex regional pain syndrome. Pain Med. doi:10.1111/j.1526-4637.2009.00559.x (2009) (Epub ahead of print).
  • Jones AKP , WatabeH, CunninghamVJ, JonesT. Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur. J. Pain8(5) , 479–485 (2004).
  • Klega A , EberleT, Buchholz H-G et al. Central opioidergic neurotransmission in complex regional pain syndrome. Neurology75(2) , 129–136 (2010).
  • Maarrawi J , PeyronR, MertensP et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain. Pain 127(1–2) , 183–194 (2007).
  • Willoch F , TölleTR, WesterHJ et al. Central pain after pontine infarction is associated with changes in opioid receptor binding: a PET study with 11C-diprenorphine. AJNR Am. J. Neuroradiol. 20(4) , 686–690 (1999).
  • Willoch F , SchindlerF, WesterHJ et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 108(3) , 213–220 (2004).
  • DosSantos MF , MartikainenIK, NascimentoTD et al. Reduced basal ganglia µ-opioid receptor availability in trigeminal neuropathic pain: a pilot study. Mol. Pain 8 , 74 (2012).
  • Harris RE , ClauwDJ, ScottDJ, McLeanSA, GracelyRH, Zubieta J-K. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci.27(37) , 10000–10006 (2007).
  • Jones AK , KitchenND, WatabeH et al. Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J. Cereb. Blood Flow Metab. 19(7) , 803–808 (1999).
  • Fukui S , MatsunoM, InubushiT, NosakaS. N-acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1)H-MRS. Magn. Reson. Imaging24(1) , 75–79 (2006).
  • Gu T , MaXX, XuYH, XiuJJ, LiCF. Metabolite concentration ratios in thalami of patients with migraine and trigeminal neuralgia measured with 1H-MRS. Neurol. Res.30(3) , 229–233 (2008).
  • Pattany PM , YezierskiRP, Widerström-NogaEG et al. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am. J. Neuroradiol. 23(6) , 901–905 (2002).
  • Sorensen L , SiddallPJ, TrenellMI, YueDK. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care31(5) , 980–981 (2008).
  • Grachev ID , FredricksonBE, ApkarianAV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain89(1) , 7–18 (2000).
  • Grachev ID , ThomasPS, RamachandranTS. Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn.49(1) , 102–113 (2002).
  • Becerra L , BreiterHC, WiseR, GonzalezRG, BorsookD. Reward circuitry activation by noxious thermal stimuli. Neuron32(5) , 927–946 (2001).
  • Maleki N , BecerraL, NutileL et al. Migraine attacks the basal ganglia. Mol. Pain 7 , 71 (2011).
  • Borsook D , UpadhyayJ, ChudlerEH, BecerraL. A key role of the basal ganglia in pain and analgesia – insights gained through human functional imaging. Mol. Pain6 , 27 (2010).
  • Maleki N , BecerraL, BrawnJ, McEwenB, BursteinR, BorsookD. Common hippocampal structural and functional changes in migraine. Brain Struct. Funct.218(4) , 903–912 (2012).
  • Mutso AA , RadzickiD, BalikiMN et al. Abnormalities in hippocampal functioning with persistent pain. J. Neurosci. 32(17) , 5747–5756 (2012).
  • Wager TD , AtlasLY. How is pain influenced by cognition? Neuroimaging weighs in. Perspect. Psychol. Sci.8(1) , 91–97 (2013).
  • Borsook D , MalekiN, BecerraL, McEwenB. Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron73(2) , 219–234 (2012).
  • Vachon-Presseau E , RoyM, MartelMO et al. The stress model of chronic pain: evidence from basal cortisol and hippocampal structure and function in humans. Brain 136(Pt 3) , 815–827 (2013).
  • Koob GF , Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side‘ of drug addiction. Nat. Neurosci.8(11) , 1442–1444 (2005).
  • Apkarian AV , BalikiMN, GehaPY. Towards a theory of chronic pain. Prog. Neurobiol.87(2) , 81–97 (2009).
  • Tracey I , MantyhPW. The cerebral signature for pain perception and its modulation. Neuron55(3) , 377–391 (2007).
  • Baliki MN , PetreB, TorbeyS et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15(8) , 1117–1119 (2012).
  • Babic A , SterB, PavesicN, WigertzO. Machine learning for the quality of life in inflammatory bowel disease. Stud. Health Technol. Inform.43(Pt B) , 661–665 (1997).
  • Mwangi B , EbmeierKP, MatthewsK, SteeleJD. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain135(Pt 5) , 1508–1521 (2012).
  • Borsook D , BecerraL, FavaM. Use of functional imaging across clinical phases in CNS drug development. Transl. Psychiatry3 , e282 (2013).
  • Maihöfner C , HandwerkerHO, NeundörferB, BirkleinF. Cortical reorganization during recovery from complex regional pain syndrome. Neurology63(4) , 693–701 (2004).
  • Apkarian AV , ThomasPS, KraussBR, SzeverenyiNM. Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci. Lett.311(3) , 193–197 (2001).
  • Gieteling EW , van Rijn MA, de Jong BM et al. Cerebral activation during motor imagery in complex regional pain syndrome type 1 with dystonia. Pain134(3) , 302–309 (2008).
  • Maihöfner C , BaronR, DeColR et al. The motor system shows adaptive changes in complex regional pain syndrome. Brain 130(Pt 10) , 2671–2687 (2007).
  • Moisset X , VillainN, DucreuxD et al. Functional brain imaging of trigeminal neuralgia. Eur. J. Pain 15(2) , 124–131 (2011).
  • Napadow V , KettnerN, RyanA, KwongKK, AudetteJ, HuiKK. Somatosensory cortical plasticity in carpal tunnel syndrome – a cross-sectional fMRI evaluation. Neuroimage31(2) , 520–530 (2006).
  • Pleger B , RagertP, SchwenkreisP et al. Patterns of cortical reorganization parallel impaired tactile discrimination and pain intensity in complex regional pain syndrome. Neuroimage 32(2) , 503–510 (2006).
  • Willoch F , RosenG, TölleTR et al. Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann. Neurol. 48(6) , 842–849 (2000).
  • Desouza DD , MoayediM, ChenDQ, DavisKD, HodaieM. Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS ONE8(6) , e66340 (2013).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.