204
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Recent Advances in the Design Of Cardiovascular Materials for Biomedical Applications

ORCID Icon, , &
Pages 1637-1645 | Received 21 Oct 2019, Accepted 03 May 2020, Published online: 18 Jun 2020

References

  • HuyerLD , MontgomeryM , ZhaoYet al.Biomaterial based cardiac tissue engineering and its applications. Biomed. Mater.10(3), 034004 (2015).
  • KitaharaM , MiyagawaS , FukushimaSet al.Biodegradable vs nonbiodegradable cardiac support device for treating ischemic cardiomyopathy in a canine heart. Semin. Thorac. Cardiovasc. Surg.29(1), 51–61 (2017).
  • LeeKM , KimH , NemenoJGet al.Natural cardiac extracellular matrix sheet as a biomaterial for cardiomyocyte transplantation. Transplant. Proc.47(3), 751–756 (2015).
  • XuY , GuanJ. Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioact. Mater.1(1), 18–28 (2016).
  • MaronDJ , HochmanJS , O’BrienSMet al.International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial: rationale and design. Am. Heart J.201, 124–135 (2018).
  • JafferIH , FredenburghJC , HirshJ , WeitzJI. Medical device-induced thrombosis: what causes it and how can we prevent it?J. Thromb. Haemost.13(Suppl. 1), S72–S81 (2015).
  • Perea-GilI , UriarteJJ , Prat-VidalCet al. In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization . Am. J. Transl. Res.7(3), 558–573 (2015).
  • ShawcrossJ , BakhaiA , AnsaripourAet al. In vivo biocompatibility and pacing function study of silver ion-based antimicrobial surface technology applied to cardiac pacemakers . Open Heart4(1), e000357 (2017).
  • DaiW , KayGL , KlonerRA. The therapeutic effect of cell transplantation versus noncellular biomaterial implantation on cardiac structure and function following myocardial infarction. J. Cardiovasc. Pharmacol. Ther.19(4), 350–357 (2014).
  • SunY , ZhangX , LiW , DiY , XingQ , CaoQ. 3D printing and biocompatibility study of a new biodegradable occluder for cardiac defect. J. Cardiol.74(2), 182–188 (2019).
  • ShreenivasSS , KereiakesDJ. Evolution of the SYNERGY bioresorbable polymer metallic coronary stent. Future Cardiol.14(4), 307–317 (2018).
  • SakamotoA , ToriiS , JinnouchiH , VirmaniR , FinnAV. Histopathologic and physiologic effect of overlapping vs single coronary stents: impact of stent evolution. Expert Rev. Med. Devices15(9), 665–682 (2018).
  • SlodownikD , DanenbergC , MerkinDet al.Coronary stent restenosis and the association with allergy to metal content of 316L stainless steel. Cardiovasc. J. Afr.29(1), 43–45 (2018).
  • VanDer Heijden LC , KokMM , ZoccaPet al.Bioresorbable Polymer-Coated Orsiro Versus Durable Polymer-Coated Resolute Onyx Stents (BIONYX): rationale and design of the randomized TWENTE IV multicenter trial. Am. Heart J.198, 25–32 (2018).
  • OyagbemiAA , OmobowaleTO , AwoyomiOVet al.Cobalt chloride toxicity elicited hypertension and cardiac complication via induction of oxidative stress and upregulation of COX-2/Bax signaling pathway. Hum. Exp. Toxicol.38(5), 519–532 (2019).
  • VosRJ , JongbloedL , SonkerU , KloppenburgGTL. Titanium plate fixation versus conventional closure for sternal dehiscence after cardiac surgery. Thorac. Cardiovasc. Surg.65(4), 338–342 (2017).
  • MaddenLR , MortisenDJ , SussmanEMet al.Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA107(34), 15211–15216 (2010).
  • JonesDA , RathodKS , GallagherSet al.Deployment of drug-eluting stents for isolated proximal lad disease is associated with lower major adverse cardiac events and no increase in stent thrombosis when compared with bare metal stents: a 5-year observational cohort study. Catheter. Cardiovasc. Interv.81(6), E237–244 (2013).
  • Rodes-CabauJ , JollySS , CairnsJet al.Sealing intermediate nonobstructive coronary saphenous vein graft lesions with drug-eluting stents as a new approach to reducing cardiac events: a randomized controlled trial. Circ. Cardiovasc. Interv.9(11), e004336 (2016).
  • CohenDJ , OsnabruggeRL , MagnusonEAet al.Cost-effectiveness of percutaneous coronary intervention with drug-eluting stents versus bypass surgery for patients with 3-vessel or left main coronary artery disease: final results from the Synergy Between Percutaneous Coronary Intervention With TAXUS and Cardiac Surgery (SYNTAX) trial. Circulation130(14), 1146–1157 (2014).
  • JakobsenL , ChristiansenEH , MaengMet al.Randomized clinical comparison of the dual-therapy CD34 antibody-covered sirolimus-eluting Combo stent with the sirolimus-eluting Orsiro stent in patients treated with percutaneous coronary intervention: rationale and study design of the Scandinavian Organization for Randomized Trials with Clinical Outcome (SORT OUT) X trial. Am. Heart J.202, 49–53 (2018).
  • DeWinter RJ , KatagiriY , AsanoTet al.A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, Phase III trial. Lancet391(10119), 431–440 (2018).
  • CerratoE , BarberoU , RomeroJaGet al.Magmaris™ resorbable magnesium scaffold: state-of-art review. Future Cardiol.15(4), 267–279 (2019).
  • SakamotoA , JinnouchiH , ToriiS , VirmaniR , FinnAV. Understanding the impact of stent and scaffold material and strut design on coronary artery thrombosis from the basic and clinical points of view. Bioengineering (Basel)5(3), 71 (2018).
  • KanL , ThayerP , FanHet al.Polymer microfiber meshes facilitate cardiac differentiation of c-kit(+) human cardiac stem cells. Exp. Cell Res.347(1), 143–152 (2016).
  • SunH , LiuCZ , LiuCet al.Employing the sirolimus-eluting poly (propylene carbonate) mesh for the prevention of arteriovenous graft stenosis in rats. J. Cardiovasc. Pharmacol. Ther.24(3), 269–277 (2019).
  • MatsushitaA , TsunodaY , HattoriT , MiharaW. Late disruption of a polyethylene terephthalate aortic graft 30 years after initial graft placement. EJVES Short Rep.38, 4–7 (2018).
  • SekimotoY , ObaraH , MatsubaraK , FujimuraN , HaradaH , KitagawaY. Comparison of early vascular morphological changes between bioresorbable poly-L-lactic acid scaffolds and metallic stents in porcine iliac arteries. Organogenesis13(2), 29–38 (2017).
  • OrlikB , MilewskiK , DerbiszKet al.Comparison of the absorb bioresorbable vascular scaffold to the Xience durable polymer everolimus-eluting metallic stent in routine clinical practice: a propensity score-matched analysis from a multicenter registry. Postepy Kardiol. Interwencyjnej14(2), 149–156 (2018).
  • AleksievaG , HollweckT , ThierfelderNet al.Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering. Biomed. Eng. Online11, 92 (2012).
  • ThierfelderN , KoenigF , BombienRet al. In vitro comparison of novel polyurethane aortic valves and homografts after seeding and conditioning . ASAIO J.59(3), 309–316 (2013).
  • FallahiarezoudarE , AhmadipourroudposhtM , YusofNM , IdrisA , NgadimanNHA. 3D biofabrication of thermoplastic polyurethane (TPU)/poly-l-lactic acid (PLLA) electrospun nanofibers containing maghemite (gamma-Fe(2)O(3)) for tissue engineering aortic heart valve. Polymers (Basel)9(11), 584 (2017).
  • KufnerS , SchacherN , FerencMet al.Outcome after new generation single-layer polytetrafluoroethylene-covered stent implantation for the treatment of coronary artery perforation. Catheter. Cardiovasc. Interv.93(5), 912–920 (2019).
  • GammieJS , BartusK , GackowskiAet al.Beating-heart mitral valve repair using a novel ePTFE cordal implantation device: a prospective trial. J. Am. Coll. Cardiol.71(1), 25–36 (2018).
  • KarjalainenPP , MikkelssonJ , PaanaT , NammasW. Clinical outcome of titanium-nitride-oxide-coated cobalt-chromium stents in patients with de novo coronary lesions: 12-month results of the OPTIMAX first-in-man study. Catheter. Cardiovasc. Interv.87(4), E122–127 (2016).
  • IopL , PalmosiT , DalSasso E , GerosaG. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J. Thorac. Dis.10(Suppl. 20), S2390–S2411 (2018).
  • DalglieshAJ , ParviziM , Lopera-HiguitaM , ShkloverJ , GriffithsLG. Graft-specific immune tolerance is determined by residual antigenicity of xenogeneic extracellular matrix scaffolds. Acta Biomater.79, 253–264 (2018).
  • GrefenL , KonigF , GrabM , HaglC , ThierfelderN. Pericardial tissue for cardiovascular application: an in-vitro evaluation of established and advanced production processes. J. Mater. Sci. Mater. Med.29(11), 172 (2018).
  • SpinaliKL , SchmuckEG. Natural sources of extracellular matrix for cardiac repair. Adv. Exp. Med. Biol.1098, 115–130 (2018).
  • LeskovarB , FurlanT , PoznicS , HrasteljM , AdamljeA. Using CorMatrix for partial and complete (re)construction of arteriovenous fistulas in haemodialysis patients: (Re)construction of arteriovenous fistulas with CorMatrix. J. Vasc. Access20(6), 597–603 (2019).
  • SzalanskiP , Uzieblo-ZyczkowskaB , ZaleskaM. Combined total mitral and tricuspid valve reconstruction with the use of CorMatrix in an adult. Interact. Cardiovasc. Thorac. Surg.28(1), 158–160 (2019).
  • RasmussenJ , SkovSN , NielsenDBet al. In-vitro and in-vivo evaluation of a novel bioprosthetic pulmonary valve for use in congenital heart surgery . J. Cardiothorac. Surg.14(1), 6 (2019).
  • PatnaikSS , SimionescuDT , GoergenCJ , HoytK , SirsiS , FinolEA. Pentagalloyl glucose and its functional role in vascular health: biomechanics and drug-delivery characteristics. Ann. Biomed. Eng.47(1), 39–59 (2019).
  • ChaudharyR , GargJ , KrishnamoorthyPet al.On-X valve: the next generation aortic valve. Cardiol. Rev.25(2), 77–83 (2017).
  • RoyM , BandyopadhyayA , BoseS. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J. Biomed. Mater. Res. B Appl. Biomater.99(2), 258–265 (2011).
  • QiuH , QiP , LiuJet al.Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials207, 10–22 (2019).
  • VahabzadehS , RoyM , BandyopadhyayA , BoseS. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater.17, 47–55 (2015).
  • KalninsU , ErglisA , DinneI , KumsarsI , JegereS. Clinical outcomes of silicon carbide coated stents in patients with coronary artery disease. Med. Sci. Monit.8(2), PI16–PI20 (2002).
  • SmithAST , YooH , YiHet al.Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineering. Chem. Commun. (Camb.)53(53), 7412–7415 (2017).
  • VannozziL , YasaIC , CeylanH , MenciassiA , RicottiL , SittiM. Self-folded hydrogel tubes for implantable muscular tissue scaffolds. Macromol. Biosci.18(4), e1700377 (2018).
  • HauertR. A review of modified DLC coatings for biological applications. Diamond Relat. Mater.12(3), 583–589 (2003).
  • JaganathanSK , SupriyantoE , MurugesanS , BalajiA , AsokanMK. Biomaterials in cardiovascular research: applications and clinical implications. BioMed Res. Int.2014, 459465 (2014).
  • IzadifarM , ChapmanD , BabynP , ChenX , KellyME. UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng. Part C Methods24(2), 74–88 (2018).
  • WuJ , LiJ , WuF , HeZ , YangP , HuangN. Effect of micropatterned TiO2 nanotubes thin film on the deposition of endothelial extracellular matrix: for the purpose of enhancing surface biocompatibility. Biointerphases10(4), 04a302 (2015).
  • ZouD , LuoX , HanC-Zet al.Preparation of a biomimetic ECM surface on cardiovascular biomaterials via a novel layer-by-layer decellularization for better biocompatibility. Mat. Sci. Eng. C96, 509–521 (2019).
  • HanC , LuoX , ZouDet al.Nature-inspired extracellular matrix coating produced by micro-patterned smooth muscle and endothelial cells endows cardiovascular materials with better biocompatibility. Biomater. Sci.7(7), 2686–2701 (2019).
  • PrajnamitraRP , ChenHC , LinCJ , ChenLL , HsiehPC. Nanotechnology approaches in tackling cardiovascular diseases. Molecules24(10), 2017 (2019).
  • LiT , LiangW , XiaoX , QianY. Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases. Int. J. Nanomed.13, 7349–7362 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.