187
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of the MALAT1/miR-106a-5p/ZNF148 Feedback Loop in Regulating HaCaT Cell Proliferation, Migration and Apoptosis

ORCID Icon, , , , &
Pages 239-258 | Received 15 Nov 2022, Accepted 12 Jan 2023, Published online: 30 Jan 2023

Reference

  • Singh N , ArmstrongDG , LipskyBA. Preventing foot ulcers in patients with diabetes. JAMA293(2), 217–228 (2005).
  • Fu XL , DingH , MiaoWW , MaoCX , ZhanMQ , ChenHL. Global recurrence rates in diabetic foot ulcers: a systematic review and meta-analysis. Diabetes Metab. Res. Rev.35(6), e3160 (2019).
  • Armstrong D , SwerdlowM , ArmstrongA , ConteM , PadulaW , BusC. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res.13(1), 16 (2020).
  • Qing C . The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol.20(4), 189–193 (2017).
  • Arya AK , TripathiR , KumarS , TripathiK. Recent advances on the association of apoptosis in chronic non healing diabetic wound. World J. Diabetes5(6), 756–762 (2014).
  • Luan A , HuMS , LeavittTet al. Noncoding RNAs in wound healing: a new and vast frontier. Adv. Wound Care7(1), 19–27 (2018).
  • Yu P , GuoJ , LiJet al. lncRNA-H19 in fibroblasts promotes wound healing in diabetes. Diabetes71(7), 1562–1578 (2022).
  • Zhang L , HuJ , MeshkatBI , LiechtyKW , XuJ. lncRNA MALAT1 modulates TGF-β1-induced EMT in keratinocyte. Int. J. Mol. Sci.22(21), 11816 (2021).
  • Jayasuriya R , DhamodharanU , KaranAN , AnandharajA , RajeshK , RamkumarKM. Role of Nrf2 in MALAT1/ HIF-1α loop on the regulation of angiogenesis in diabetic foot ulcer. Free Radic. Biol. Med.156, 168–175 (2020).
  • Hu J , ZhangL , LiechtyCet al. Long noncoding RNA GAS5 regulates macrophage polarization and diabetic wound healing. J. Invest. Dermatol.140(8), 1629–1638 (2020).
  • Peng W-X , HeP-X , LiuL-Jet al. LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers. Lab. Invest.101(8), 1071–1083 (2021).
  • Liang Z-H , PanY-C , LinS-S , QiuZ-Y , ZhangZ. LncRNA MALAT1 promotes wound healing via regulating miR-141-3p/ZNF217 axis. Regen. Ther.15, 202–209 (2020).
  • Tiwari A , MukherjeeB , DixitM. MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr. Cancer Drug Targets18(3), 266–277 (2018).
  • Li D , PengH , QuLet al. miR-19a/b and miR-20a promote wound healing by regulating the inflammatory response of keratinocytes. J. Invest. Dermatol.141(3), 659–671 (2021).
  • Wan G , XuZ , XiangXet al. Elucidation of endothelial progenitor cell dysfunction in diabetes by RNA sequencing and constructing lncRNA–miRNA–mRNA competing endogenous RNA network. J. Mol. Med. (Berl).100(11), 1569–1585 (2022).
  • He Z-Y , HuangM-T , CuiXet al. Long noncoding RNA GAS5 accelerates diabetic wound healing and promotes lymphangiogenesis via miR-217/Prox1 axis. Mol. Cell. Endocrinol.532, 111283 (2021).
  • Qian L , PiL , FangB-R , MengX-X. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab. Invest.101(9), 1254–1266 (2021).
  • Li B , LuanS , ChenJet al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via microRNA-152-3p. Mol. Ther. Nucleic Acids19, 814–826 (2020).
  • Ma J , WangW , AzhatiB , WangY , TusongH. miR-106a-5p functions as a tumor suppressor by targeting VEGFA in renal cell carcinoma. Dis. Markers2020, 8837941 (2020).
  • Zhou X , ChenZ , PeiL , SunJ. MicroRNA miR-106a-5p targets forkhead box transcription factor FOXC1 to suppress the cell proliferation, migration, and invasion of ectopic endometrial stromal cells via the PI3K/Akt/mTOR signaling pathway. Bioengineered12(1), 2203–2213 (2021).
  • Zhuang M , ZhaoS , JiangZet al. MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility. Ebiomedicine. 41, 286–298 (2019).
  • Gao X , MaC , SunXet al. Upregulation of ZNF148 in SDHB-deficient gastrointestinal stromal tumor potentiates forkhead box M1-mediated transcription and promotes tumor cell invasion. Cancer Sci.111(4), 1266–1278 (2020).
  • Jiang C , WuX , LiXet al. Loss of microRNA-147 function alleviates synovial inflammation through ZNF148 in rheumatoid and experimental arthritis. Eur. J. Immunol.51(8), 2062–2073 (2021).
  • Liu Y , HuangW , GaoX , KuangF. Regulation between two alternative splicing isoforms ZNF148 and ZNF148, and their roles in the apoptosis and invasion of colorectal cancer. Pathol. Res. Pract.215(2), 272–277 (2019).
  • Miranda KC , HuynhT , TayYet al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell126(6), 1203–1217 (2006).
  • Karagkouni D , ParaskevopoulouMD , TastsoglouSet al. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res.48(D1), D101–D110 (2020).
  • Li J-H , LiuS , ZhouH , QuL-H , YangJ-H. starBase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res.42(Database issue), D92–D97 (2014).
  • Chen Y , WangX. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res.48(D1), D127–D131 (2020).
  • Mcgeary SE , LinKS , ShiCYet al. The biochemical basis of microRNA targeting efficacy. Science366(6472), eaav1741 (2019).
  • ENCODE Project Consortium . An integrated encyclopedia of DNA elements in the human genome. Nature489(7414), 57–74 (2012).
  • Luo Y , HitzBC , GabdankIet al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res.48(D1), D882–D889 (2020).
  • Khan A , FornesO , StiglianiAet al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res.46(D1), D260–D266 (2018).
  • Kent WJ , SugnetCW , FureyTSet al. The human genome browser at UCSC. Genome Res.12(6), 996–1006 (2002).
  • Rosenbloom KR , SloanCA , MalladiVSet al. ENCODE data in the UCSC genome browser: year 5 update. Nucleic Acids Res.41(Database issue), D56–D63 (2013).
  • Gurtner GC , WernerS , BarrandonY , LongakerMT. Wound repair and regeneration. Nature453(7193), 314–321 (2008).
  • Pastar I , StojadinovicO , YinNCet al. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care3(7), 445–464 (2014).
  • Komine M , RaoLS , FreedbergIM , SimonM , MilisavljevicV , BlumenbergM. Interleukin-1 induces transcription of keratin K6 in human epidermal keratinocytes. J. Invest. Dermatol.116(2), 330–338 (2001).
  • Jones AM , GriffithsJL , SandersAJet al. The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration. Int. J. Mol. Med.38(3), 679–686 (2016).
  • Werner S , SmolaH , LiaoXet al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science266(5186), 819–822 (1994).
  • Komine M , RaoLS , KanekoTet al. Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J. Biol. Chem.275(41), 32077–32088 (2000).
  • Wong YH , WongSH , WongXTet al. Genetic associated complications of type 2 diabetes mellitus. Panminerva Med.64(2), 274–288 (2022).
  • Pastar I , MarjanovicJ , StoneRCet al. Epigenetic regulation of cellular functions in wound healing. Exp. Dermatol.30(8), 1073–1089 (2021).
  • Cech TR , SteitzJA. The noncoding RNA revolution – trashing old rules to forge new ones. Cell157(1), 77–94 (2014).
  • Li X , LiN , LiB , FengY , ZhouD , ChenG. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg. Med. Chem. Lett.50, 128311 (2021).
  • He L , ZhuC , JiaJet al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci. Rep.40(5), BSR20192549 (2020).
  • Xu Y , ZhangX , HuXet al. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9. Mol. Med.24(1), 52 (2018).
  • Wang N , CaoS , WangX , ZhangL , YuanH , MaX. lncRNA MALAT1/miR-26a/26b/ST8SIA4 axis mediates cell invasion and migration in breast cancer cell lines. Oncol. Rep.46(2), 181 (2021).
  • Qi X , ZhangD-H , WuN , XiaoJ-H , WangX , MaW. ceRNA in cancer: possible functions and clinical implications. J. Med. Genet.52(10), 710–718 (2015).
  • Pan B , GuoD , JingLet al. Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury. Neural Regen. Res.18(5), 1147–1153 (2023).
  • Wu H-Y , WangX-H , LiuK , ZhangJ-L. LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis. Cell Cycle19(1), 39–52 (2020).
  • Zhang W , ShenZ , XingYet al. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate. Exp. Cell Res.386(2), 111734 (2020).
  • Bai L , LogsdonC , MerchantJL. Regulation of epithelial cell growth by ZBP-89: potential relevance in pancreatic cancer. Int. J. Gastrointest. Cancer31(1-3), 79–88 (2002).
  • Zhang JX , ChenZH , ChenDLet al. LINC01410–miR-532–NCF2–NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis. Oncogene37(20), 2660–2675 (2018).
  • Liang Y , ZhangCD , ZhangC , DaiD-Q. DLX6-AS1/miR-204-5p/OCT1 positive feedback loop promotes tumor progression and epithelial–mesenchymal transition in gastric cancer. Gastric Cancer23(2), 212–227 (2020).
  • Hu YL , FengY , ChenYYet al. SNHG16/miR-605-3p/TRAF6/NF-κB feedback loop regulates hepatocellular carcinoma metastasis. J. Cell. Mol. Med.24(13), 7637–7651 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.