484
Views
0
CrossRef citations to date
0
Altmetric
Review

Vascular Regeneration: Engineering the Stem Cell Microenvironment

&
Pages 435-447 | Published online: 13 May 2009

Bibliography

  • Sata M , NagaiR: Vascular regeneration and remodeling by circulating progenitor cells. In: Cardiovascular Regeneration Therapies Using Tissue Engineering Approaches. Springer-Verlag, Tokyo 117–127 (2005).
  • Hirsch AT , CriquiMH, Treat-JacobsonDet al.: Peripheral arterial disease detection, awareness, and treatment in primary care.JAMA286 , 1317–1324 (2001).
  • Srivastava D , IveyKN: Potential of stem-cell-based therapies for heart disease.Nature441 , 1097–1099 (2006).
  • Adams B , XiaoQ, XuQ: Stem cell therapy for vascular disease.Trends Cardiovasc. Med.17 , 246–251 (2007).
  • Isner JM , AsaharaT: Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization.J. Clin. Invest.103 , 1231–1236 (1999).
  • Guiducci S , DistlerO, DistlerJHW, Matucci-CerinicM: Mechanisms of vascular damage in SSc – implications for vascular treatment strategies.Rheumatology (Oxford)47 , v18–v20 (2008).
  • Wobus AM , BohelerKR: Embryonic stem cells: prospects for developmental biology and cell therapy.Physiol. Rev.85 , 635–678 (2005).
  • Wang L , LiL, ShojaeiFet al.: Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties.Immunity21 , 31–41 (2004).
  • Gerecht-Nir S , ZiskindA, CohenS, Itskovitz-EldorJ: Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation.Lab. Invest.83 , 1811–1820 (2003).
  • Levenberg S , GolubJS, AmitM, Itskovitz-EldorJ, LangerR: Endothelial cells derived from human embryonic stem cells.Proc. Natl Acad. Sci. USA99 , 4391–4396 (2002).
  • Gerecht-Nir S , DazardJE, Golan-MashiachMet al.: Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells.Dev. Dyn.232 , 487–497 (2005).
  • Ferreira LS , GerechtS, FullerJ, ShiehHF, Vunjak-NovakovicG, LangerR: Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells.Biomaterials28 , 2706–2717 (2007).
  • Kaufman DS , HansonET, LewisRL, AuerbachR, ThomsonJA: Hematopoietic colony-forming cells derived from human embryonic stem cells.Proc. Natl Acad. Sci. USA98 , 10716–10721 (2001).
  • Vodyanik MA , BorkJA, ThomsonJA, SlukvinII: Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential.Blood105 , 617–626 (2005).
  • Wang ZZ , AuP, ChenTet al.: Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo.Nat. Biotechnol.25 , 317–318 (2007).
  • Zambidis ET , PeaultB, ParkTS, BunzF, CivinCI: Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development.Blood106 , 860–870 (2005).
  • Sone M , ItohH, YamaharaKet al.: Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration.Arterioscler. Thromb. Vasc. Biol.27 , 2127–2134 (2007).
  • Cho S -W, Moon S-H, Lee S-H et al.: Improvement of postnatal neovascularization by human embryonic stem cell-derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation116 , 2409–2419 (2007).
  • Lu S -J, Feng Q, Caballero S et al.: Generation of functional hemangioblasts from human embryonic stem cells. Nat. Meth.4 , 501–509 (2007).
  • Izadpanah R , TryggC, PatelBet al.: Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue.J. Cell. Biochem.99 , 1285–1297 (2006).
  • Huang NF , LiS: Mesenchymal stem cells for vascular regeneration.Regen. Med.3 , 877–892 (2008).
  • Quarto R , MastrogiacomoM, CanceddaRet al.: Repair of large bone defects with the use of autologous bone marrow stromal cells.N. Engl. J. Med.344 , 385–386 (2001).
  • Katritsis DG , SotiropoulouPA, KarvouniEet al.: Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium.Catheter. Cardiovasc. Interv.65 , 321–329 (2005).
  • Asahara T , BautersC, ZhengLPet al.: Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo.Circulation92 , II365–II371 (1995).
  • Al-Khaldi A , EliopoulosN, MartineauD, LejeuneL, LachapelleK, GalipeauJ: Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo.Gene Ther.10 , 621–629 (2003).
  • Gruber R , KandlerB, HolzmannPet al.: Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells.Tissue Eng.11 , 896–903 (2005).
  • Chen J , ParkHC, AddabboFet al.: Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair.Kidney Int.74 , 879–889 (2008).
  • Gong ZD , NiklasonLE: Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs).FASEB J.22 , 1635–1648 (2008).
  • Melero-Martin JM , De Obaldia ME, Kang SY et al.: Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res.103 , 194–202 (2008).
  • Wu Y , ChenL, ScottPG, TredgetEE: Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis.Stem Cells25 , 2648–2659 (2007).
  • Chen L , TredgetEE, WuPY, WuY: Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.PLoS ONE3 , e1886 (2008).
  • Yu J , VodyanikMA, Smuga-OttoKet al.: Induced pluripotent stem cell lines derived from human somatic cells.Science318 , 1917–1920 (2007).
  • Takahashi K , TanabeK, OhnukiMet al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell131 , 861–872 (2007).
  • Park IH , ZhaoR, WestJAet al.: Reprogramming of human somatic cells to pluripotency with defined factors.Nature451 , 141–146 (2008).
  • Schenke-Layland K , RhodesKE, AngelisEet al.: Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages.Stem Cells26 , 1537–1546 (2008).
  • Mauritz C , SchwankeK, ReppelMet al.: Generation of functional murine cardiac myocytes from induced pluripotent stem cells.Circulation118 , 507–517 (2008).
  • Delo DM , OlsonJ, BaptistaPMet al.: Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart.Stem Cells Dev.17 , 1185–1193 (2008).
  • De Coppi P , BartschG, SiddiquiMMet al.: Isolation of amniotic stem cell lines with potential for therapy.Nat. Biotech.25 , 100–106 (2007).
  • Murayama T , AsaharaT: Bone marrow-derived endothelial progenitor cells for vascular regeneration.Curr. Opin. Mol. Ther.4 , 395–402 (2002).
  • Melero-Martin JM , KhanZA, PicardA, WuX, ParuchuriS, BischoffJ: In vivo vasculogenic potential of human blood-derived endothelial progenitor cells.Blood109 , 4761–4768 (2007).
  • Stellos K , GnerlichS, KraemerB, LindemannS, GawazM: Platelet interaction with progenitor cells: vascular regeneration or injury?Pharmacol. Rep.60 , 101–108 (2008).
  • Shi Q , RafiiS, WuMHet al.: Evidence for circulating bone marrow-derived endothelial cells.Blood92 , 362–367 (1998).
  • Asahara T , MasudaH, TakahashiTet al.: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.Circ. Res.85 , 221–228 (1999).
  • Peichev M , NaiyerAJ, PereiraDet al.: Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors.Blood95 , 952–958 (2000).
  • Igreja C , FragosoR, CaiadoFet al.: Detailed molecular characterization of cord blood-derived endothelial progenitors.Exp. Hematol.36 , 193–203 (2008).
  • Au P , DaheronLM, DudaDGet al.: Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels.Blood111(3) , 1302–1305 (2008).
  • Cherqui S , KurianSM, SchusslerO, HewelJA, YatesJR 3rd, Salomon DR: Isolation and angiogenesis by endothelial progenitors in the fetal liver. Stem Cells24 , 44–54 (2006).
  • Grenier G , ScimeA, Le Grand F et al.: Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells25 , 3101–3110 (2007).
  • Tavian M , ZhengB, OberlinEet al.: The vascular wall as a source of stem cells.Ann. NY Acad. Sci.1044 , 41–50 (2005).
  • Zengin E , ChalajourF, GehlingUMet al.: Vascular wall resident progenitor cells: a source for postnatal vasculogenesis.Development133 , 1543–1551 (2006).
  • Ingram DA , MeadLE, TanakaHet al.: Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood.Blood104 , 2752–2760 (2004).
  • Yoder MC , MeadLE, PraterDet al.: Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.Blood109 , 1801–1809 (2007).
  • Shin H : Fabrication methods of an engineered microenvironment for analysis of cell–biomaterial interactions.Biomaterials28 , 126–133 (2007).
  • Risau W : Mechanisms of angiogenesis.Nature386 , 671–674 (1997).
  • Prior BM , YangHT, TerjungRL: What makes vessels grow with exercise training?J. Appl. Physiol.97 , 1119–1128 (2004).
  • Ferrara N , GerberHP, LeCouterJ: The biology of VEGF and its receptors.Nat. Med.9 , 669–676 (2003).
  • Fan XJ , KriegS, KuoCJet al.: VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.FASEB J.22 , 3571–3580 (2008).
  • Storkebaum E , LambrechtsD, CarmelietP: VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection.Bioessays26 , 943–954 (2004).
  • Peattie RA , NayateAP, FirpoMA, ShelbyJ, FisherRJ, PrestwichGD: Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants.Biomaterials25 , 2789–2798 (2004).
  • Ehrbar M , MettersA, ZammarettiP, HubbellJA, ZischAH: Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity.J. Contr. Rel.101 , 93–109 (2005).
  • Koch S , YaoC, GriebG, PrevelP, NoahEM, SteffensGCM: Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF.J. Mater. Sci. Mater. Med.17 , 735–741 (2006).
  • Schmidt A , LadageD, SchinkotheTet al.: Basic fibroblast growth factor controls migration in human mesenchymal stem cells.Stem Cells24 , 1750–1758 (2006).
  • Edelman ER , NugentMA, SmithLT, KarnovskyMJ: Basic fibroblast growth-factor enhaces the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries.J. Clin. Invest.89 , 465–473 (1992).
  • Richardson TP , PetersMC, EnnettAB, MooneyDJ: Polymeric system for dual growth factor delivery.Nat. Biotech.19 , 1029–1034 (2001).
  • Chen RR , SilvaEA, YuenWW, MooneyDJ: Spatio–temporal VEGF and PDGF delivery patterns blood vessel formation and maturation.Pharm. Res.24 , 258–264 (2007).
  • Nerem RM : Vascular fluid mechanics, the arterial-wall, and atherosclerosis.J. Biomech. Eng.114(3) , 274–282 (1992).
  • Mo M , EskinSG, SchillingWP: Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear-stress and ATP.Am. J. Physiol.260 , H1698–H1707 (1991).
  • De Keulenaer GW , ChappellDC, IshizakaN, NeremRM, AlexanderRW, GriendlingKK: Oscillatory and steady laminar shear stress differentially affect human endothelial redox state – role of a superoxide-producing NADH oxidase.Circ. Res.82 , 1094–1101 (1998).
  • Shyy JY , ChienS: Role of integrins in endothelial mechanosensing of shear stress.Circ. Res.91 , 769–775 (2002).
  • Stone PH , CoskunAU, KinlaySet al.: Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans – in vivo 6-month follow-up study.Circulation108 , 438–444 (2003).
  • Huang H , NakayamaY, QinKet al.: Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading.J. Art. Org.8 , 110–118 (2005).
  • Wang H , RihaGM, YanSet al.: Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line.Arterioscler. Thromb. Vasc. Biol.25 , 1817–1823 (2005).
  • Illi B , ScopeceA, NanniSet al.: Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.Circ. Res.96 , 501–508 (2005).
  • Zeng LF , XiaoQZ, MargaritiAet al.: HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells.J. Cell Biol.174 , 1059–1069 (2006).
  • Metallo CM , VodyanikMA, Pablo JJd, Slukvin II, Palecek SP: The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol. Bioeng.100 , 830–837 (2008).
  • Ye C , BaiL, YanZQ, WangYH, JiangZL: Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cells via activation of Akt.Clin. Biomechanics23 , S118–S124 (2008).
  • Kasper G , DankertN, TuischerJet al.: Mesenchymal stem cells regulate angiogenesis according to their mechanical environment.Stem Cells25 , 903–910 (2007).
  • Timpl R : Macromolecular organization of basement membranes.Curr. Opin. Cell Biol.8 , 618–624 (1996).
  • Abrams GA , SchausSS, GoodmanSL, NealeyPF, MurphyCJ: Nanoscale topography of the corneal epithelial basement membrane and Descemet‘s membrane of the human.Cornea19 , 57–64 (2000).
  • Watt FM , JordanPW, O‘NeillCH: Cell shape controls terminal differentiation of human epidermal keratinocytes.Proc. Natl Acad. Sci. USA85 , 5576–5580 (1988).
  • McBeath R , PironeDM, NelsonCM, BhadrirajuK, ChenCS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.Dev. Cell6 , 483–495 (2004).
  • Yim EK , ReanoRM, PangSW, YeeAF, ChenCS, LeongKW: Nanopattern-induced changes in morphology and motility of smooth muscle cells.Biomaterials26 , 5405–5413 (2005).
  • Pasqui D , RossiA, BarbucciR, LamponiS, GerliR, WeberE: Hyaluronan and sulphated hyaluronan micropatterns: effect of chemical and topographic cues on lymphatic endothelial cell alignment and proliferation.Lymphology38 , 50–65 (2005).
  • Rossi A , PasquiD, BarbucciR, GerliR, WeberE: The topography of microstructured surfaces differently affects fibrillin deposition by blood and lymphatic endothelial cells in culture.Tissue Eng. A15(3) , 525–533 (2009).
  • Galis ZS , KhatriJJ: Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly.Circ. Res.90 , 251–262 (2002).
  • Baluk P , HashizumeH, McDonaldDM: Cellular abnormalities of blood vessels as targets in cancer.Curr. Opin. Genet. Dev.15 , 102–111 (2005).
  • Davis GE , SengerDR: Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization.Circ. Res.97 , 1093–1107 (2005).
  • Li J , Zhang Y-P, Kirsner RS: Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech.60 , 107–114 (2003).
  • Stupack DG , ChereshDA, GeraldPS: Integrins and angiogenesis.Curr. Top. Dev. Biol.64 , 207–238 (2004).
  • Wijelath ES , RahmanS, MurrayJ, PatelY, SavidgeG, SobelM: Fibronectin promotes VEGF-induced CD34+ cell differentiation into endothelial cells.J. Vasc. Surg.39 , 655–660 (2004).
  • Stupack DG , ChereshDA: ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands.Sci. STKE2002(119) , PE7 (2002).
  • Silva EA , Kim E-S, Kong HJ, Mooney DJ: Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA105 , 14347–14352 (2008).
  • Seal BL , OteroTC, PanitchA: Polymeric biomaterials for tissue and organ regeneration. Materials science and engineering.Reports34 , 147–230 (2001).
  • Hutmacher DW : Scaffold design and fabrication technologies for engineering tissues state of the art and future perspectives.J. Biomater. Sci. Polym. Ed.12 , 107–124 (2001).
  • Chen G , UshidaT, TateishiT: Development of biodegradable porous scaffolds for tissue engineering.Mater. Sci. Eng. C17 , 63–69 (2001).
  • Van Tomme SR , HenninkWE: Biodegradable dextran hydrogels for protein delivery applications.Expert Rev. Med. Dev.4 , 147–164 (2007).
  • Levenberg S , HuangNF, LavikE, RogersAB, Itskovitz-EldorJ, LangerR: Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds.Proc. Natl Acad. Sci. USA100 , 12741–12746 (2003).
  • Wang GJ , HsuehCC, HsuSH, HungHS: Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography.J. Micromech. Microeng.17 , 2000–2005 (2007).
  • Ma ZW , HeW, YongT, RamakrishnaS: Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation.Tissue Eng.11 , 1149–1158 (2005).
  • Williamson MR , WoollardKJ, GriffithsHR, CoombesAGA: Gravity spun polycaprolactone fibers for applications in vascular tissue engineering: proliferation and function of human vascular endothelial cells.Tissue Eng.12 , 45–51 (2006).
  • Pankajakshan D , KalliyanaK, KrishnanLK: Vascular tissue generation in response to signaling molecules integrated with a novel poly(ε-caprolactone)-fibrin hybrid scaffold.J. Tissue Eng. Regen. Med.1 , 389–397 (2007).
  • Sarkar S , LeeGY, WongJY, DesaiTA: Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.Biomaterials27 , 4775–4782 (2006).
  • Nijst CLE , BruggemanJP, KarpJMet al.: Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate).Biomacromolecules8 , 3067–3073 (2007).
  • Gerecht S , TownsendSA, PresslerHet al.: A porous photocurable elastomer for cell encapsulation and culture.Biomaterials28 , 4826–4835 (2007).
  • Davis ME , MotionJPM, NarmonevaDAet al.: Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells.Circulation111 , 442–450 (2005).
  • Ekaputra AK , PrestwichGD, CoolSM, HutmacherDW: Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs.Biomacromolecules9 , 2097–2103 (2008).
  • Kidoaki S , KwonIK, MatsudaT: Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques.Biomaterials26 , 37–46 (2005).
  • Zong X , BienH, Chung C-Y et al.: Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials26 , 5330–5338 (2005).
  • Yang F , MuruganR, WangS, RamakrishnaS: Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials26 , 2603–2610 (2005).
  • Yoshimoto H , ShinYM, TeraiH, VacantiJP: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering.Biomaterials24 , 2077–2082 (2003).
  • Jin HJ , ChenJS, KarageorgiouV, AltmanGH, KaplanDL: Human bone marrow stromal cell responses on electrospun silk fibroin mats.Biomaterials25 , 1039–1047 (2004).
  • Soffer L , WangXY, MangXHet al.: Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts.J. Biomater. Sci. Polym. Ed.19 , 653–664 (2008).
  • Jin HJ , FridrikhSV, RutledgeGC, KaplanDL: Electrospinning Bombyx mori silk with poly(ethylene oxide).Biomacromolecules3 , 1233–1239 (2002).
  • Matthews JA , WnekGE, SimpsonDG, BowlinGL: Electrospinning of collagen nanofibers.Biomacromolecules3 , 232–238 (2002).
  • Matthews JA , BolandED, WnekGE, SimpsonDG, BowlinGL: Electrospinning of collagen type II: a feasibility study.J. Bioact. Compat. Polym.18 , 125–134 (2003).
  • Shin M , YoshimotoH, VacantiJP: In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold.Tissue Eng.10 , 33–41 (2004).
  • Stankus JJ , SolettiL, FujimotoK, HongY, VorpDA, WagnerWR: Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization.Biomaterials28 , 2738–2746 (2007).
  • Thomas V , ZhangX, CatledgeSA, VohraYK: Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.Biomed. Mater.2 , 224–232 (2007).
  • Jeong SI , KimSY, ChoSKet al.: Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.Biomaterials28 , 1115–1122 (2007).
  • Lee SJ , YooJJ, LimGJ, AtalaA, StitzeJ: In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application.J. Biomed. Mater. Res. A83A , 999–1008 (2007).
  • Qi HX , KongSL, HuP, ZhangJ, LinWJ, SongF: Biomimic tubulose scaffolds with multilayer prepared by electrospinning for tissue engineering.Mater. Sci. Forum510–511, 882–885 (2006).
  • UNIV NANYANG TECHNOLOGICAL. WO2008069760-A1. Chian KS, Leong MF, Gopal PE, Ratner BD: Three-dimensional hybrid scaffold for tissue engineering comprises porous bioadhesive layer connected to surface of layer of decellularized biological material; and three-dimensional porous polymer scaffold connected to bioadhesive layer (2008).
  • Nicodemus GD , BryantSJ: Cell encapsulation in biodegradable hydrogels for tissue engineering applications.Tissue Eng. B Rev.14 , 149–165 (2008).
  • Shaikh FM , CallananA, KavanaghEG, BurkePE, GracePA, McGloughlinTM: Fibrin: a natural biodegradable scaffold in vascular tissue engineering.Cells Tissues Organs188 , 333–346 (2008).
  • Seliktar D , BlackRA, VitoRP, NeremRM: Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro.Ann. Biomed. Eng.28 , 351–362 (2000).
  • Yamamoto M , IkadaY, TabataY: Controlled release of growth factors based on biodegradation of gelatin hydrogel.J. Biomater. Sci. Polym. Ed.12 , 77–88 (2001).
  • Ishihara M , ObaraK, IshizukaTet al.: Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization.J. Biomed. Mater. Res.64(3) 551–559 (2003).
  • Silva EA , MooneyDJ: Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis.J. Thromb. Haem.5 , 590–598 (2007).
  • Sun G , Chu C-C: Synthesis, characterization of biodegradable dextran-allyl isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin. Carbohydr. Polym.65 , 273–287 (2006).
  • Stephen P , MassiaJS: Immobilized RGD peptides on surface-grafted dextran promote biospecific cell attachment.J. Biomed. Mater. Res.56 , 390–399 (2001).
  • Giavaresi G , TorricelliP, FornasariPM, GiardinoR, BarbucciR, LeoneG: Blood vessel formation after soft-tissue implantation of hyaluronanbased hydrogel supplemented with copper ions.Biomaterials26 , 3001–3008 (2005).
  • Slevin M , KrupinskiJ, KumarS, GaffneyJ: Angiogenic oligosaccharides of hyaluronan induce protein tyrosine kinase activity in endothelial cells and activate a cytoplasmic signal transduction pathway resulting in proliferation.Lab. Invest.78 , 987–1003 (1998).
  • Gerecht S , BurdickJA, FerreiraLS, TownsendSA, LangerR, Vunjak-NovakovicG: Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells.Proc. Natl Acad. Sci. USA104 , 11298–11303 (2007).
  • Loebsack A , GreeneK, WyattSet al.: In vivo characterization of a porous hydrogel material for use as a tissue bulking agent.J. Biomed. Mater. Res.57 , 575–581 (2001).
  • Gerecht-Nir S , CohenS, ZiskindA, Itskovitz-EldorJ: Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells.Biotechnol. Bioeng.88 , 313–320 (2004).
  • Moroni L , De Wijn JR, Van Blitterswijk CA: Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polym. Ed.19 , 543–572 (2008).
  • Sittinger M , HutmacherDW, RisbudMV: Current strategies for cell delivery in cartilage and bone regeneration.Curr. Opin. Biotechnol.15 , 411–418 (2004).
  • Chenite A , ChaputC, WangDet al.: Novel injectable neutral solutions of chitosan form biodegradable gels in situ.Biomaterials21 , 2155–2161 (2000).
  • Petit-Zeman S : Regenerative medicine.Nat. Biotech.19 , 201–206 (2001).
  • Bettinger CJ , ZhangZ, GerechtS, BorensteinJT, LangerR: Enhancement of in vitro capillary tube formation by substrate nanotopography.Adv. Mater.20 , 99–103 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.