6,910
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel Sources of Fetal Stem Cells: Where do they Fit on the Developmental Continuum?

&
Pages 423-433 | Published online: 13 May 2009

Bibliography

  • Klimanskaya I , RosenthalN, LanzaR: Derive and conquer: sourcing and differentiating stem cells for therapeutic applications.Nat. Rev. Drug Discov.7 , 131–142 (2008).
  • Hemberger M , YangW, NataleDet al.: Stem cells from fetal membranes. A Workshop Report.Placenta22 , S17–S19 (2008).
  • Guillot PV , GotherstromC, ChanJ, KurataH, FiskNM: Human first trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC.Stem Cells25 , 646–654 (2007).
  • DeCoppi P , BartschG Jr, Siddiqui MM et al.: Isolation of amniotic stem cells with potential for therapy. Nat. Biotech.25 , 100–106 (2007).
  • Roubelakis MG , PappaKI, BitsikaVet al.: Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells.Stem Cells Dev.16 , 931–952 (2007).
  • Kim J , LeeY, KimHet al.: Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells.Cell Prolif.40 , 75–90 (2007).
  • Tsai MS , LeeJL, ChangYJ, HwangSM: Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol.Hum. Reprod.19 , 1450–1456 (2004).
  • Tsai MS , HwangSM, TsaiYL, ChengFC, LeeJL, ChangYJ: Clonal amniotic fluid-derived cells express characteristics of both mesenchymal and neural stem cells.Biol. Reprod.74 , 545–551 (2006).
  • Bossolasco P , MontemurroT, CovaLet al.: Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential.Cell Res.16 , 329–336 (2006).
  • Prusa AR , MartonE, RosnerM, BernaschekG, HengstschlägerM: Oct-4 expressing cells in human amniotic fluid: a new source for stem cell research?Hum. Reprod.18 , 1489–1493 (2003).
  • Prusa AR , MartonE, RosnerMet al.: Neurogenic cells in human amniotic fluid.Am. J. Obstet. Gynecol.191 , 309–314 (2004).
  • Perin L , SedrakyanS, Da Sacco S, De Filippo R: Characterization of human amniotic fluid stem cells and their pluripotential capacity. Methods Cell Biol.86 , 85–99 (2008).
  • Zhao P , IseH, HongoM, OtaM, KonishiI, NikaidoT: Human amniotic mesenchymal cells have some characteristics of cardiomyocytes.Transplantation79 , 528–535 (2005).
  • Kolambkar YM , PeisterA, SokerS, AtalaA, GuldbergRE: Chondrogenic differentiation of amniotic fluid-derived stem cells.J. Mol. Histol.38 , 405–413 (2007).
  • Kunisaki SM , ArmantM, KaoGS, StevensonK, KimH, FauzaDO: Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials.J. Pediatr. Surg.42 , 974–980 (2007).
  • Sessarego N , ParodiA, PodestàMet al.: Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application.Haematologica93 , 339–346 (2008).
  • Tsai MS , HwangSM, ChenKDet al.: Functional network analysis on the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow.Stem Cells25 , 2511–2523 (2007).
  • Sartore S , LenziM, AngeliniAet al.: Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes.Eur. J. Cardiothorac. Surg.28 , 677–684 (2005).
  • Chiavegato A , BolliniS, PozzobonMet al.: Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat.J. Mol. Cell. Cardiol.42 , 746–759 (2007).
  • Pan HC , YangDY, ChiuYTet al.: Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell.J. Clin. Neurosci.13 , 570–575 (2006).
  • Schmidt D , AchermannJ, OdermattBet al.: Prenatally fabricated autologous human living heart valves based on amniotic fluid-derived progenitor cells as single cell source.Circulation116 , S64–S70 (2007).
  • De Coppi P , CallegariA, ChiavegatoAet al.: Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells.J. Urol.117 , 369–376 (2007).
  • Broxmeyer HE , SrourE, OrschellCet al.: Cord blood stem cell and progenitor cells.Methods Enzymol.419 , 439–473 (2006).
  • Broxmeyer HE : Biology of cord blood cells and future prospects for enhanced clinical benefit.Cytotherapy7 , 209–218 (2005).
  • Mazurier F , DoedensM, GanOI: Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells.Nat. Med.9 , 953–963 (2003).
  • McNiece IK , Almeida-ParadaG, ShpallEJ: ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential.Exp. Hematol.30 , 612–616 (2002).
  • Stier S , ChengT, DombkowskiD: Notch-1 activation increases hemopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome.Blood99 , 2369–2378 (2002).
  • Reya T , DuncanAW, AillesL: A role for Wnt signaling in self-renewal of haematopoietic stem cells.Nature423 , 409–414 (2003).
  • Tao W , BroxmeyerHE: Towards a molecular understanding of hematopoietic stem cell and progenitor cells. In: Cord Blood: Biology, Immunology, Banking, and Clinical Transplantation. Broxmeyer HE (Ed.). American Association of Blood Banking, Bethesda, MD, USA 87–123 (2004).
  • Wang JF , WangLJ, WuYF: Mesenchymal stem/progenitor cells in human umbilical cord blood as support for in vivo expansion of CD34+ hematopoietic stem cells and for chondrogenic differentiation.Haematologica89 , 837–844 (2004).
  • Javazon EH , BeggsKJ, FlakeAW: Mesenchymal stem cells: paradoxes of passaging.Exp. Hematol.32 , 414–425 (2004).
  • McGuckin CP , ForrazN, AllouardQ, PettengelR: Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro.Exp. Cell Res.295 , 350–359 (2004).
  • Sanchez-Ramos J : Stem cells from human umbilical cord blood.Sem. Reprod. Med.24 , 358–369 (2006).
  • Koponen JK , KekarainenT, HeinonenSEet al.: Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse hindlimb ischemia model.Mol. Ther.15 , 2172–2177 (2007).
  • Tondreau T , MeulemanN, DelforgeAet al.: Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity.Stem Cells23 , 1105–1112 (2005).
  • Greco SJ , LinK, RameshwarP: Functional similarities among genes regulated by Oct4 in human mesenchymal and embryonic stem cells.Stem Cells25 , 3143–3154 (2007).
  • McGuckin CP , ForrazN, BaradezMOet al.: Production of stem cells with embryonic characteristics from human umbilical cord blood.Cell Prolif.38 , 245–255 (2005).
  • Zhao Y , WangH, MazzoneT: Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics.Exp. Cell Res.312 , 2454–2464 (2006).
  • Markov V , KusumiK, TadesseMet al.: Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.Stem Cells Dev.16 , 53–73 (2007).
  • Sun B , RohKH, LeeSR, LeeYS, KangKS: Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure.Biochem. Biophys. Res. Commun.354 , 919–923 (2007).
  • Lee OK , KuoTK, ChenWM, LeeKD, HsiehSL, ChenTH: Isolation of multipotent mesenchymal stem cells from umbilical cord blood.Blood103 , 1669–1675 (2004).
  • Reinisch A , BartmannC, RohdeEet al.: Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application.Regen. Med.2 , 371–382 (2008).
  • Chang YJ , ShihDT, TsengCP, HsiehTB, LeeDC, HwangSM: Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood.Stem Cells24 , 679–685 (2006).
  • Chang YJ , TsengCP, HsuLF, HsiehTB, HwangSM: Characterization of two populations of mesenchymal progenitor cells in umbilical cord blood.Cell Biol. Int.30 , 495–499 (2006).
  • Weiss ML , MedicettyS, BledsoeARet al.: Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson‘s disease.Stem Cells24 , 781–792 (2006).
  • Sarugaser R , LickorishD, BakshD, HosseiniMM, DaviesJE: Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors.Stem Cells23 , 220–229 (2005).
  • Karahuseyinoglou S , CinarO, KilicEet al.: Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys.Stem Cells25 , 319–331 (2007).
  • Mitchell KE , WeissML, MitchellBMet al.: Matrix cells from Wharton‘s jelly form neurons and glia.Stem Cells21 , 50–60 (2003).
  • Wang HS , HungSC, PengSTet al.: Mesenchymal stem cells in the Wharton‘s jelly of the human umbilical cord.Stem Cells22 , 1330–1337 (2004).
  • Takechi K , KuwabaraY, MizunoM: Ultrastructural and immunohistochemical studies of Wharton‘s jelly umbilical cord cells.Placenta14 , 235–245 (1993).
  • Fu YS , ChengYC, LinMYet al.: Conversion of human umbilical cord mesenchymal stem cells in Wharton‘s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism.Stem Cells24 , 115–124 (2006).
  • Carlin R , DavisD, WeissM, SchultzB, TroyerD: Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells.Reprod. Biol. Endocrinol.4 , 8 (2006).
  • Conconi MT , BurraP, Di Liddo R et al.: CD105+ cells from Wharton‘s jelly show in vitro and in vivo myogenic differentiation potential. Int. J. Mol. Med.18 , 1089–1096 (2006).
  • Ilancheran S , MichalskaA, PehG, WallaceEM, PeraM, ManuelpillaiU: Stem cells derived from human fetal membranes display multilineage differentiation potential.Biol. Reprod.77 , 577–588 (2007).
  • Miki T , MitamuraK, RossMA, StolzDB, StromSC: Identification of stem cell marker-positive cells by immunofluoresence in term human amnion.J. Reprod. Immunol.75 , 91–96 (2007).
  • Miki T , StromSC: Amnion-derived pluripotent/multipotent stem cells.Stem Cell Rev.2 , 133–142 (2006).
  • Marcus AJ , CoyneTM, RauchJ, WoodburyD, BlackIB: Isolation, characterization and differentiation of stem cells derived from the rat amniotic membrane.Differentiation76 , 130–144 (2008).
  • Alviano F , FossatiV, MarchionniCet al.: Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro.BMC Dev. Biol.7 , 11 (2007).
  • Tamagawa T , OiS, IshiwataI, IshikawaH, NakamuraY: Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro.Hum. Cell20 , 77–84 (2007).
  • Wolbank S , PeterbauerA, FahrnerMet al.: Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue.Tissue Eng.13 , 1173–1183 (2007).
  • Keating A : How do mesenchymal stromal cells suppress T cells?Cell Stem Cell2 , 106–108 (2008).
  • Parolini O , AlvianoF, BagnaraGPet al.: Isolation and characterization of cells from human term placenta: outcome of the First International Workshop on Placenta-Derived Stem Cells.Stem Cells26 , 300–311 (2008).
  • Wen F , TynanJA, CecenaGet al.: Ets2 is required for trophoblast stem cell self-renewal.Dev. Biol.312 , 284–299 (2007).
  • Battula VL , TremlS, AbeleH, BühringHJ: Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody.Differentiation76 , 326–336 (2008).
  • Strakova Z , LivakM, KrezalekM, IhnatovychI: Multipotent properties of myofibroblasts cells derived from human placenta.Cell Tissue Res.332 , 479–488 (2008).
  • Kim SJ , SongCH, SungHJet al.: Human placenta-derived feeders support prolonged undifferentiated propagation of a human embryonic stem cell line, SNUhES3: comparison with human bone marrow-derived feeders.Stem Cells Dev.16 , 421–428 (2007).
  • Miao Z , JinJ, ChenLet al.: Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells.Cell Biol. Int.30 , 681–687 (2006).
  • Li C , ZhangW, JiangX, MaoN: Human placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells.Cell Tissue Res.330 , 437–446 (2007).
  • Jones BJ , BrookeG, AtkinsonK, McTaggartSJ: Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells.Placenta28 , 1174–1181 (2007).
  • Li D , WangGY, DongBH, ZhangYC, WangYX, SunBC: Biological characteristics of human placental mesenchymal stem cells and their proliferative response to various cytokines.Cells Tissues Organs186 , 169–179 (2007).
  • Battula VL , BareissPM, TremlSet al.: Human placenta and bone-marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation.Differentiation75 , 279–291 (2007).
  • Fukuchi Y , NakajimaH, SugiyamaD, HiroseI, KitamuraT, TsujiK: Human placenta-derived cells have mesenchymal stem/progenitor cell potential.Stem Cells22 , 649–658 (2004).
  • In‘t Anker PS , ScherjonSA, Kleijburg-van der Keur C et al.: Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells22 , 1338–1345 (2004).
  • Portmann-Lanz CB , SchoeberleinA, HuberAet al.: Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration.Am. J. Obstet. Gynecol.194 , 664–673 (2006).
  • Yen BL , ChienCC, ChenYCet al.: Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro.Tissue Eng. Part A14 , 9–17 (2008).
  • Chang CM , KaoCL, ChangYLet al.: Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells.Biochem. Biophys. Res. Commun.357 , 414–420 (2007).
  • Chien CC , Yenn Bl, Lee FK et al.: In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells24 , 1759–1768 (2006).
  • Schmidt D , MolA, BreymannCet al.: Living autologous heart valves engineered from human prenatally harvested progenitors.Circulation114 , S125–S131 (2006).
  • Zhang HJ , SiuMKY, WongESY, WongKY, LiASM, ChanKYK: Oct-4 is epigenetically regulated by methylation in normal placenta and gestational trophoblastic disease.Placenta29 , 549–554 (2008).
  • Wu CC , ChaoYC, ChenCNet al.: Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells.J. Biomech.41 , 813–821 (2008).
  • Lang I , SchweizerA, HiddenUet al.: Human fetal placenta endothelial cells have a mature arterial and a juvenile venous phenotype with adipogenic and osteogenic differentiation potential.Differentiation76 , 1031–1043 (2008).
  • Brooke G , TongH, LevesqueJP, AtkinsonK: Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta.Stem Cells Dev.17 , 929–940. (2008).
  • Prather WR , TorenA, MeironM: Placental-derived and expanded mesenchymal stromal cells (PLX-I) to enhance the engraftment of hematopoietic stem cells derived from umbilical cord blood.Expert Opin. Biol. Ther.8 , 1241–1250 (2008).
  • Kim JS , RomeroR, TarcaAet al.: Gene expression profiling demonstrates a novel role for fetal fibrocytes and the umbilical vessels in human fetoplacental development.J. Cell. Mol. Med.12 , 1317–1330 (2008).
  • Chen CP , LeeMY, HuangJPet al.: Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor-1 and integrins.Stem Cells26 , 550–561 (2008).
  • Rhodes KE , GekasC, WangYet al.: The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation.Cell Stem Cell2 , 252–263 (2008).
  • Soupene E , SerikovV, KuypersFA: Characterization of an acyl-coenzyme A binding protein predominantly expressed in human primitive progenitor cells.Lipid Res.49 , 1103–1112 (2008).
  • Mao JL , KurmanRJ, HuangCC, LinMC, ShihIEM: Immunohistochemistry of choriocarcinoma: an aid in differential diagnosis and in elucidating pathogenesis.Am. J. Surg. Pathol.31 , 1726–1732 (2007).
  • Daley GQ , HyunI, LindvallO: Mapping the road to the clinical translation of stem cells.Cell Stem Cell2 , 139–140 (2008).
  • Jaenisch R , YoungR: The molecular circuitry of pluripotency and nuclear reprogramming.Cell132 , 567–582 (2008).
  • Rossant J : Stem cells and early lineage development.Cell132 , 527–531 (2008).
  • Emanuel P : AFS cells – where do they fit on the continuum?The Hematologist: ASH News and Reports4 , 1 (2007).
  • Gilbert SF : The early development of vertebrates. In: Developmental Biology (8th Edition). Sinauer Associates, Inc., MA, USA 353 (2006).
  • Gilbert SF , TylerAL, ZackinEJ: Bioethics and the New Embryology: Springboards for the Debate. Sinauer Associates, Inc., MA, USA 20 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.