109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Negative Neuronal Differentiation of Human Adipose-Derived Stem Cell Clones

, , , , , & show all
Pages 279-293 | Published online: 17 Jun 2014

References

  • Lee OK , Kuo TK , Chen WN , Lee KD , Hsieh SL , Chen TH . Isolation of multipotent mesenchymal stem cells from umbilical cordon blood . Blood 103 ( 5 ), 1669 – 1675 ( 2004 ).
  • Campagnoli C , Roberts IA , Kumar S , Bennet PR , Bellantuono I , Fisk NM . Identification of mesenchymal stem/progenitor cells in human first trimester fetal blood, liver and bone marrow . Blood 98 ( 8 ), 2396 – 2402 ( 2001 ).
  • Tsai MS , Lee JL , Chang YJ , Hwang SM . Isolation of human multipotent mesenchymal stem cells from second trimester amniotic fluid using a novel two-stage culture protocol . Hum. Reprod. 19 ( 6 ), 1450 – 1456 ( 2004 ).
  • De Bari C , Dell’Accio F , Tylzanowski P , Luyten FP . Multipotent mesenchymal stem cells from adult human sinovial membrane . Arthritis Rheum. 44 ( 8 ), 1928 – 1942 ( 2001 ).
  • Miura M , Gronthos S , Zhao M et al. SHED: stem cells from human exfoliated deciduous teeth . Proc. Natl Acad. Sci. USA 100 ( 10 ), 5807 – 5812 ( 2003 ).
  • Zuk PA , Zhu M , Ashjian P et al. Human adipose tissue is a source of multipotent stem cells . Mol. Biol. Cell 13 ( 12 ), 4279 – 4295 ( 2002 ).
  • Kern S , Eichler H , Stoeve J , Kluter H , Bieback K . Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood or adipose tissue . Stem Cells 24 ( 5 ), 1294 – 1301 ( 2006 ).
  • Boquest AC , Noer A , Collas P . Epigenetic programming of mesenchymal stem cells from human adipose tissue . Stem Cell Rev. 2 ( 4 ), 319 – 329 ( 2006 ).
  • Huang JI , Zuk PA , Jones NF et al. Chondrogenic potential of multipotential cells from human adipose tissue . Plast. Reconstr. Surg. 113 ( 2 ), 585 – 594 ( 2004 ).
  • Di Rocco G , Iachininoto MG , Tritarelli A et al. Myogenic potential of adipose-tissue-derived cells . J. Cell Sci. 119 ( Pt 14 ), 2945 – 2952 ( 2006 ).
  • Rodriguez LV , Alfonso ZG , Zhang R , Leung J , Wu B , Ignarro LJ . Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells . Proc. Natl Acad. Sci. USA 103 ( 32 ), 12167 – 12172 ( 2006 ).
  • Fraser JK , Schreiber R , Strem B et al. Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes . Nat. Clin. Pract. Cardiovasc. Med. 3 ( Suppl. 1 ), 33 – 37 ( 2006 ).
  • Ashjian PH , Elbarbary AS , Edmonds B et al. In vitro differentiation of human processed lipoaspirate cells into early neuronal progenitors . Plast. Reconstr. Surg. 111 ( 6 ), 1922 – 1931 ( 2003 ).
  • Brzoska M , Geiger H , Gauer S , Baer P . Epithelial differentiation of human adipose tissue-derived adult stem cells . Biochem. Biophys. Res. Commun. 330 ( 1 ), 142 – 150 ( 2005 ).
  • Planat-Benard V , Silvestre JS , Cousin B et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives . Circulation 109 ( 5 ), 656 – 663 ( 2004 ).
  • Banas A , Teratani T , Yamamoto Y et al. Adipose tissue derived mesenchymal stem cells as a source of human hepatocytes . Hepatology 46 ( 1 ), 219 – 228 ( 2007 ).
  • Timper K , Seboek D , Eberhardt M et al. Human adipose tissue derived mesenchynal stem cells differentiate into insulin, somatostatin and glucagon expressing cells . Biochem. Biophys. Res. Commun. 341 ( 4 ), 1135 – 1140 ( 2006 ).
  • Arribas MI , Jones J , Martinez S , Roche E . Adipose cell-derived stem cells: neurogenic and immunomodulatory potentials . Adv. Neuroimmune Biol. 3 ( 1 ), 19 – 30 ( 2012 ).
  • Paredes B , Santana A , Arribas MI et al. Phenotypic differences during the osteogenic differentiation of single cell-derived clones isolated from human lipoaspirates . J. Tissue Eng. Regen. Med. 5 ( 8 ), 589 – 599 ( 2011 ).
  • Guilak F , Lott KE , Awad HA et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells . J. Cell. Physiol. 206 ( 1 ), 229 – 237 ( 2006 ).
  • Zuk PA , Zhu M , Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies . Tissue Eng. 7 ( 2 ), 211 – 226 ( 2001 ).
  • Bibikova M , Lin Z , Zhou L et al. High-throughput DNA methylation profiling using universal bead arrays . Genome Res. 16 ( 3 ), 383 – 393 ( 2006 ).
  • Calvanese V , Fernandez AF , Urdinguio RG et al. A promoter DNA demethylation landscape of human hematopoietic differentiation . Nucleic Acids Res. 40 ( 1 ), 116 – 131 ( 2012 ).
  • Mohn F , Weber M , Rebhan M et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors . Mol. Cell 30 ( 6 ), 755 – 766 ( 2008 ).
  • Corrales A , Montoya JV , Sutachan JJ et al. Transient increases in extracellular K+ produce two pharmacological distinct cytosolic Ca2+ transients . Brain Res. 1031 ( 2 ), 174 – 184 ( 2005 ).
  • Nadal A , Fuentes E , Pastor J , McNaughton PA . Plasma albumin induces calcium waves in rat cortical astrocytes . Glia 19 ( 4 ), 343 – 351 ( 1997 ).
  • Sánchez-Ramos J , Song S , Cardozo-Pelaez F et al. Adult bone marrow stromal cells differentiate into neuronal cells in vitro . Exp. Neurol. 164 ( 2 ), 247 – 256 ( 2000 ).
  • Kompisch KM , Lange C , Steinemann D et al. Neurogenic transdifferentiation of human adipose derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations . Histochem. Cell Biol. 134 ( 5 ), 453 – 468 ( 2010 ).
  • Deng W , Obrocka M , Fischer I , Prockop D . In vitro differentiation of human marrow stromal cells into early progenitors of neuronal cells by conditions that increase intracellular cyclic AMP . Biochem. Biophys. Res. Commun. 282 ( 1 ), 148 – 152 ( 2001 ).
  • Kim BJ , Seo JH , Bubbien JK , Oh YS . Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro . Neuroreport 13 ( 9 ), 1185 – 1188 ( 2002 ).
  • Lu P , Blesch A , Tuszynski MH . Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 77 ( 2 ), 174 – 191 ( 2004 ).
  • Neuhuber B , Gallo G , Howard L , Kostura L , Mackay A , Fischer I . Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype . J. Neurosci. Res. 77 ( 2 ), 192 – 204 ( 2004 ).
  • Safford KM , Hicok KC , Safford SD et al. Neurogenic differentiation of murine and human adipose derived stromal cells . Biochem. Biophys. Res. Commun. 294 ( 2 ), 371 – 379 ( 2002 ).
  • Kokai LE , Rubin JP , Marra KG . The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells . Plast. Reconstr. Surg. 116 ( 5 ), 1453 – 1460 ( 2005 ).
  • Tondreau T , Dejeneffe M , Meuleman N et al. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells . BMC Genomics 9 , 166 ( 2008 ).
  • Čížková D , Rosocha J , Vanický I , Radonák J , Gálik J , Čížck M . Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress . Neurochem. Res. 31 ( 8 ), 1011 – 1020 ( 2006 ).
  • Zhao Y , Xin J , Sun C , Zhao B , Zhao J , Su L . Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70 . Gene 509 ( 1 ), 85 – 92 ( 2012 ).
  • Kang SK , Lee DH , Bae YC , Kim HK , Baik SY , Jung JS . Improvement of neurological deficits by intracerebral transplantation of human adipose tissue derived stromal cells after cerebral ischemia in rats . Exp. Neurol. 183 ( 2 ), 355 – 366 ( 2003 ).
  • Zurita M , Vaquero J . Bone marrow stromal cells can achieve cure of chronic paraplegic rats: functional and morphological outcome one year after transplantation . Neurosci. Lett. 402 ( 1–2 ), 51 – 56 ( 2006 ).
  • Zurita M , Vaquero J , Bonilla C et al. Functional recovery of chronic paraplegic pigs after autologous transplantation of bone marrow stromal cells . Transplantation 86 ( 6 ), 845 ( 2008 ).
  • Jones J , Jaramillo-Merchán J , Bueno C , Pastor D , Viso-León M , Martínez S . Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia . Neurobiol. Dis. 40 ( 2 ), 415 – 423 ( 2010 ).
  • Bonilla S , Silva A , Valdés L , Geijo E , García-Verdugo JM , Martínez S . Functional neuronal stem cells derived from adult bone marrow . Neuroscience 133 ( 1 ), 85 – 95 ( 2005 ).
  • Pastor D , Viso-León MC , Jones J et al. Comparative effects between bone marrow and mesenchymal stem cell transplantation in GDNF expression and motor function recovery in a motorneuron degenerative mouse model . Stem Cell Rev. 8 ( 2 ), 445 – 458 ( 2012 ).
  • Lopatina T , Kalinina N , Karagyaur M et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo . PLoS ONE 6 ( 3 ), e17899 ( 2011 ).
  • Carlson KB , Singh P , Feaster MM et al. Mesenchymal stem cells facilitate axon sorting, myelination, and functional recovery in paralyzed mice deficient in Schwann cell-derived laminin . Glia 59 ( 2 ), 267 – 277 ( 2011 ).
  • Steffenhagen C , Dechant FX , Oberbauer E et al. Mesenchymal stem cells prime proliferating adult neuronal progenitors towards an oligodendrocyte fate . Stem Cells Dev. 21 ( 11 ), 1838 – 1851 ( 2011 ).
  • Liver and myocardial iron overload . http://oernst.f5lvg.free.fr/liver/iron.html  

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.