330
Views
0
CrossRef citations to date
0
Altmetric
Review

Pituitary Cell Differentiation from Stem Cells and Other Cells: Toward Restorative Therapy for Hypopituitarism?

&
Pages 513-534 | Published online: 27 Aug 2014

References

  • Melmed S . The Pituitary (3rd Edition).Academic Press, MA, USA ( 2010 ).
  • Levy A. Physiological implications of pituitary trophic activity . J. Endocrinol.174 ( 2 ), 147 – 155 ( 2002 ).
  • Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary . J. Clin. Invest.112 ( 11 ), 1603 – 1618 ( 2003 ).
  • Vankelecom H. Stem cells in the postnatal pituitary? Neuroendocrinology 85 ( 2 ), 110 – 130 ( 2007 ).
  • Vankelecom H. Pituitary stem/progenitor cells: embryonic players in the adult gland? Eur. J. Neurosci. 32 ( 12 ), 2063 – 2081 ( 2010 ).
  • Nolan LA , LevyA. A population of non-luteinising hormone/non-adrenocorticotrophic hormone-positive cells in the male rat anterior pituitary responds mitotically to both gonadectomy and adrenalectomy . J. Neuroendocrinol.18 ( 9 ), 655 – 661 ( 2006 ).
  • Rizzoti K , AkiyamaH , Lovell-BadgeR. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand . Cell Stem Cell13 ( 4 ), 419 – 432 ( 2013 ).
  • Alvarez-Buylla A , LimDA. For the long run: maintaining germinal niches in the adult brain . Neuron41 ( 5 ), 683 – 686 ( 2004 ).
  • Kelberman D , RizzotiK , Lovell-BadgeR , RobinsonIC , DattaniMT. Genetic regulation of pituitary gland development in human and mouse . Endocr. Rev.30 ( 7 ), 790 – 829 ( 2009 ).
  • Rizzoti K , Lovell-BadgeR. Early development of the pituitary gland: induction and shaping of Rathke’s pouch . Rev. Endocr. Metab. Disord.6 ( 3 ), 161 – 172 ( 2005 ).
  • Zhu X , GleibermanAS , RosenfeldMG. Molecular physiology of pituitary development: signaling and transcriptional networks . Physiol. Rev.87 ( 3 ), 933 – 963 ( 2007 ).
  • Wood HB , EpiskopouV. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages . Mech. Dev.86 ( 1–2?? ), 197 – 201 ( 1999 ).
  • Zhu X , ZhangJ , TollkuhnJet al. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis . Genes Dev.20 ( 19 ), 2739 – 2753 ( 2006 ).
  • Olson LE , TollkuhnJ , ScafoglioCet al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination . Cell125 ( 3 ), 593 – 605 ( 2006 ).
  • Lin SC , LinCR , GukovskyI , LusisAJ , SawchenkoPE , RosenfeldMG. Molecular basis of the little mouse phenotype and implications for cell type-specific growth . Nature364 ( 6434 ), 208 – 213 ( 1993 ).
  • Palomino T , BarettinoD , ArandaA. Role of GHF-1 in the regulation of the rat growth hormone gene promoter by thyroid hormone and retinoic acid receptors . J. Biol. Chem.273 ( 42 ), 27541 – 27547 ( 1998 ).
  • Palomino T , Sanchez-PachecoA , PenaP , ArandaA. A direct protein-protein interaction is involved in the cooperation between thyroid hormone and retinoic acid receptors and the transcription factor GHF-1 . FASEB J.12 ( 12 ), 1201 – 1209 ( 1998 ).
  • Day RN , KoikeS , SakaiM , MuramatsuM , MaurerRA. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene . Mol. Endocrinol.4 ( 12 ), 1964 – 1971 ( 1990 ).
  • Dasen JS , O’ConnellSM , FlynnSEet al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types . Cell97 ( 5 ), 587 – 598 ( 1999 ).
  • Ericson J , NorlinS , JessellTM , EdlundT. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary . Development125 ( 6 ), 1005 – 1015 ( 1998 ).
  • Ingraham HA , LalaDS , IkedaYet al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis . Genes Dev.8 ( 19 ), 2302 – 2312 ( 1994 ).
  • Schneider HJ , AimarettiG , Kreitschmann-AndermahrI , StallaGK , GhigoE. Hypopituitarism . Lancet369 ( 9571 ), 1461 – 1470 ( 2007 ).
  • Vimpani GV , VimpaniAF , LidgardGP , CameronEH , FarquharJW. Prevalence of severe growth hormone deficiency . Br. Med. J.2 ( 6084 ), 427 – 430 ( 1977 ).
  • Thomas M , MassaG , CraenMet al. Prevalence and demographic features of childhood growth hormone deficiency in Belgium during the period 1986–2001 . Eur. J. Endocrinol.151 ( 1 ), 67 – 72 ( 2004 ).
  • Lindsay R , FeldkampM , HarrisD , RobertsonJ , RallisonM. Utah Growth Study: growth standards and the prevalence of growth hormone deficiency . J. Pediatr.125 ( 1 ), 29 – 35 ( 1994 ).
  • Dattani MT , Martinez-BarberaJP , ThomasPQet al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse . Nat. Genet.19 ( 2 ), 125 – 133 ( 1998 ).
  • Machinis K , PantelJ , NetchineIet al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4 . Am. J. Hum. Genet.69 ( 5 ), 961 – 968 ( 2001 ).
  • Mendonca BB , OsorioMG , LatronicoAC , EstefanV , LoLS , ArnholdIJ. Longitudinal hormonal and pituitary imaging changes in two females with combined pituitary hormone deficiency due to deletion of A301, G302 in the PROP1 gene . J. Clin. Endocrinol. Metab.84 ( 3 ), 942 – 945 ( 1999 ).
  • Rajab A , KelbermanD , De CastroSCet al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss . Hum. Mol. Genet.17 ( 14 ), 2150 – 2159 ( 2008 ).
  • Tatsumi K , MiyaiK , NotomiTet al. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene . Nat. Genet.1 ( 1 ), 56 – 58 ( 1992 ).
  • Wu W , CoganJD , PfaffleRWet al. Mutations in PROP1 cause familial combined pituitary hormone deficiency . Nat. Genet.18 ( 2 ), 147 – 149 ( 1998 ).
  • Franca MM , JorgeAA , CarvalhoLRet al. Relatively high frequency of non-synonymous GLI2 variants in patients with congenital hypopituitarism without holoprosencephaly . Clin. Endocrinol. (Oxford)78 ( 4 ), 551 – 557 ( 2013 ).
  • Melmed S. Pathogenesis of pituitary tumors . Nat. Rev. Endocrinol.7 ( 5 ), 257 – 266 ( 2011 ).
  • Regal M , ParamoC , SierraSM , Garcia-MayorRV. Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain . Clin. Endocrinol. (Oxford)55 ( 6 ), 735 – 740 ( 2001 ).
  • Kelestimur F. Chronic trauma in sports as a cause of hypopituitarism . Pituitary8 ( 3–4 ), 259 – 262 ( 2005 ).
  • Kelestimur F , TanriverdiF , AtmacaH , UnluhizarciK , SelcukluA , CasanuevaFF. Boxing as a sport activity associated with isolated GH deficiency . J. Endocrinol. Invest.27 ( 11 ), RC28–RC32 ( 2004 ).
  • Gasco V , ProdamF , PaganoLet al. Hypopituitarism following brain injury: when does it occur and how best to test? Pituitary 15 ( 1 ), 20 – 24 ( 2012 ).
  • Gasco V , ProdamF , GrottoliSet al. GH therapy in adult GH deficiency: a review of treatment schedules and the evidence for low starting doses . Eur. J. Endocrinol.168 ( 3 ), R55–R66 ( 2013 ).
  • Van Aken MO , LambertsSW. Diagnosis and treatment of hypopituitarism: an update . Pituitary8 ( 3–4 ), 183 – 191 ( 2005 ).
  • Best J , DolleL , MankaP , CoombesJ , Van GrunsvenLA , SynWK. Role of liver progenitors in acute liver injury . Front. Physiol.4 , 258 ( 2013 ).
  • Yin H , PriceF , RudnickiMA. Satellite cells and the muscle stem cell niche . Physiol. Rev.93 ( 1 ), 23 – 67 ( 2013 ).
  • Saeger W , WarneckeH. Ultrastructural examination of the regeneration of the rat adenohypophysis after partial hypophysectomy . Virchows Arch. A Pathol. Anat. Histol.387 ( 3 ), 279 – 288 ( 1980 ).
  • Yoshimura F , HarumiyaK , IshikawaH , OtsukaY. Differentiation of isolated chromophobes into acidophils or basophils when transplanted into the hypophysiotrophic area of hypothalamus . Endocrinol. Jpn16 ( 5 ), 531 – 540 ( 1969 ).
  • Borrelli E , HeymanRA , AriasC , SawchenkoPE , EvansRM. Transgenic mice with inducible dwarfism . Nature339 ( 6225 ), 538 – 541 ( 1989 ).
  • Nolan LA , KavanaghE , LightmanSL , LevyA. Anterior pituitary cell population control: basal cell turnover and the effects of adrenalectomy and dexamethasone treatment . J. Neuroendocrinol.10 ( 3 ), 207 – 215 ( 1998 ).
  • Fu Q , GremeauxL , LuqueRMet al. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration . Endocrinology153 ( 7 ), 3224 – 3235 ( 2012 ). 
  • Fu Q , VankelecomH. Regenerative capacity of the adult pituitary: multiple mechanisms of lactotrope restoration after transgenic ablation . Stem Cells Dev.21 ( 18 ), 3245 – 3257 ( 2012 ).
  • Luque RM , AmargoG , IshiiSet al. Reporter expression, induced by a growth hormone promoter-driven Cre recombinase (rGHp-Cre) transgene, questions the developmental relationship between somatotropes and lactotropes in the adult mouse pituitary gland . Endocrinology148 ( 5 ), 1946 – 1953 ( 2007 ).
  • Buch T , HeppnerFL , TertiltCet al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration . Nat. Methods2 ( 6 ), 419 – 426 ( 2005 ).
  • Landolt AM. Regeneration of the human pituitary . J.  Neurosurg.39 ( 1 ), 35 – 41 ( 1973 ).
  • Aimaretti G , AmbrosioMR , Di SommaCet al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study . J. Clin. Endocrinol. Metab.90 ( 11 ), 6085 – 6092 ( 2005 ).
  • Karaca Z , TanriverdiF , DagliATet al. Three years prospective investigation of pituitary functions following subarachnoid haemorrhage . Pituitary16 ( 1 ), 76 – 82 ( 2013 ).
  • Tanriverdi F , UlutabancaH , UnluhizarciK , SelcukluA , CasanuevaFF , KelestimurF Three years prospective investigation of anterior pituitary function after traumatic brain injury: a pilot study . Clin. Endocrinol. (Oxford)68 ( 4 ), 573 – 579 ( 2008 ).
  • Ishikawa H , ShiinoM , RennelsEG. Effects of fetal brain extract on the growth and differentiation of rat pituitary anlage cells . Proc. Soc. Exp. Biol. Med.155 ( 4 ), 511 – 515 ( 1977 ).
  • Shiino M ,  IshikawaH ,  RennelsEG.   Invitro and invivo studies on cytodifferentiation of pituitary clonal cells derived from the epithelium of Rathke’s pouch .  Cell Tissue Res.181 ( 4 ),  473 – 485  ( 1977 ).
  • Bowie EP , IshikawaH , ShiinoM , RennelsEG. An immunocytochemical study of a rat pituitary multipotential clone . J. Histochem. Cytochem.26 ( 2 ), 94 – 97 ( 1978 ).
  • Cheng Y , XiangY , LinYet al. Retinoic acid and dexamethasone induce differentiation and maturation of somatotroph cells at different stages in vitro . Endocr. J.58 ( 3 ), 177 – 184 ( 2011 ).
  • Otsuka Y , IshikawaH , OmotoT , TakasakiY , YoshimuraF. Effect of CRF on the morphological and functional differentiation of the cultured chromophobes isolated from rat anterior pituitaries . Endocrinol. Jpn18 ( 2 ), 133 – 153 ( 1971 ).
  • Rizzoti K. Adult pituitary progenitors/stem cells: from in vitro characterization to in vivo function . Eur. J. Neurosci.32 ( 12 ), 2053 – 2062 ( 2010 ).
  • Vankelecom H , GremeauxL. Stem cells in the pituitary gland: a burgeoning field . Gen. Comp. Endocrinol.166 ( 3 ), 478 – 488 ( 2010 ).
  • Vankelecom H , ChenJ. Pituitary stem cells: where do we stand? Mol. Cell Endocrinol. 385 ( 1–2?? ), 2–17 ( 2014 ).
  • Lepore DA , RoeszlerK , WagnerJ , RossSA , BauerK , ThomasPQ. Identification and enrichment of colony-forming cells from the adult murine pituitary . Exp. Cell Res.308 ( 1 ), 166 – 176 ( 2005 ).
  • Lepore DA , ThomasGP , KnightKRet al. Survival and differentiation of pituitary colony-forming cells in vivo . Stem Cells25 ( 7 ), 1730 – 1736 ( 2007 ).
  • Chen J , GremeauxL , FuQ , LiekensD , Van LaereS , VankelecomH. Pituitary progenitor cells tracked down by side population dissection . Stem Cells27 ( 5 ), 1182 – 1195 ( 2009 ).
  • Garcia-Lavandeira M , QueredaV , FloresIet al. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary . PLoS ONE4 ( 3 ), e4815 ( 2009 ).
  • Andoniadou CL , Gaston-MassuetC , ReddyRet al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma . Acta Neuropathol.124 ( 2 ), 259 – 271 ( 2012 ).
  • Fauquier T , RizzotiK , DattaniM , Lovell-BadgeR , RobinsonIC. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland . Proc. Natl Acad. Sci. USA105 ( 8 ), 2907 – 2912 ( 2008 ).
  • Yoshida S , KatoT , SusaT , CaiLY , NakayamaM , KatoY. PROP1 coexists with SOX2 and induces PIT1-commitment cells . Biochem. Biophys. Res. Commun.385 ( 1 ), 11 – 15 ( 2009 ).
  • Yoshida S , KatoT , YakoHet al. Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary . J. Neuroendocrinol.23 ( 10 ), 933 – 943 ( 2011 ).
  • Osuna M , SonobeY , ItakuraEet al. Differentiation capacity of native pituitary folliculostellate cells and brain astrocytes . J. Endocrinol.213 ( 3 ), 231 – 237 ( 2012 ).
  • Gleiberman AS , MichurinaT , EncinasJMet al. Genetic approaches identify adult pituitary stem cells . Proc. Natl Acad. Sci. USA105 ( 17 ), 6332 – 6337 ( 2008 ).
  • Kim GL , WangX , ChalmersJAet al. Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes . PLoS ONE6 ( 11 ), e27799 ( 2011 ).
  • Krylyshkina O , ChenJ , MebisL , DenefC , VankelecomH . Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells . Endocrinology146 ( 5 ), 2376 – 2387 ( 2005 ).
  • Galichet C , Lovell-BadgeR , RizzotiK. Nestin-Cre mice are affected by hypopituitarism, which is not due to significant activity of the transgene in the pituitary gland . PLoS ONE5 ( 7 ), e11443 ( 2010 ).
  • Yoshida S , KatoT , HiguchiMet al. Rapid transition of NESTIN-expressing dividing cells from PROP1-positive to PIT1-positive advances prenatal pituitary development . J. Neuroendocrinol.25 ( 9 ), 779 – 791 ( 2013 ).
  • Andoniadou CL , MatsushimaD , Mousavy GharavySNet al. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential . Cell Stem Cell13 ( 4 ), 433 – 445 ( 2013 ). 
  • Hayashi S , McmahonAP. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse . Dev. Biol.244 ( 2 ), 305 – 318 ( 2002 ).
  • Langlais D , CoutureC , KmitaM , DrouinJ. Adult pituitary cell maintenance: lineage-specific contribution of self-duplication . Mol. Endocrinol.27 ( 7 ), 1103 – 1112 ( 2013 ).
  • Castrique E , Fernandez-FuenteM , Le TissierP , HermanA , LevyA. Use of a prolactin-Cre/ROSA-YFP transgenic mouse provides no evidence for lactotroph transdifferentiation after weaning, or increase in lactotroph/somatotroph proportion in lactation . J. Endocrinol.205 ( 1 ), 49 – 60 ( 2010 ).
  • Hyslop LA , ArmstrongL , StojkovicM , LakoM. Human embryonic stem cells: biology and clinical implications . Expert. Rev. Mol. Med.7 ( 19 ), 1 – 21 ( 2005 ).
  • Ng ES , DavisRP , AzzolaL , StanleyEG , ElefantyAG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation . Blood106 ( 5 ), 1601 – 1603 ( 2005 ).
  • Wong SS , BernsteinHS. Cardiac regeneration using human embryonic stem cells: producing cells for future therapy . Regen. Med.5 ( 5 ), 763 – 775 ( 2010 ).
  • Kim DS , KimJY , KangM , ChoMS , KimDW. Derivation of functional dopamine neurons from embryonic stem cells . Cell Transplant.16 ( 2 ), 117 – 123 ( 2007 ).
  • Barberi T , BradburyM , DincerZ , PanagiotakosG , SocciND , StuderL. Derivation of engraftable skeletal myoblasts from human embryonic stem cells . Nat. Med.13 ( 5 ), 642 – 648 ( 2007 ).
  • D’Amour KA , BangAG , EliazerSet al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells . Nat. Biotechnol.24 ( 11 ), 1392 – 1401 ( 2006 ).
  • Antonica F , KasprzykDF , OpitzRet al. Generation of functional thyroid from embryonic stem cells . Nature491 ( 7422 ), 66 – 71 ( 2012 ).
  • Sonoyama T , SoneM , HondaKet al. Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells . Endocrinology153 ( 9 ), 4336 – 4345 ( 2012 ).
  • Kroon E , MartinsonLA , KadoyaKet al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo . Nat. Biotechnol.26 ( 4 ), 443 – 452 ( 2008 ).
  • Zhao X , TengR , AsanumaKet al. Differentiation of mouse embryonic stem cells into gonadotrope-like cells in vitro . J. Soc. Gynecol. Investig.12 ( 4 ), 257 – 262 ( 2005 ).
  • Pineda ET , NeremRM , AhsanT. Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture . Cells Tissues Organs197 ( 5 ), 399 – 410 ( 2013 ).
  • Wagner J , LeporeD , ThomasP. Differentiation of mouse embryonic stem cells into growth hormone and prolactin expressing cells in vitro . Mol. Cell. Endocrinol.273 ( 1–2 ), 68 – 74 ( 2007 ).
  • Suga H , KadoshimaT , MinaguchiMet al. Self-formation of functional adenohypophysis in three-dimensional culture . Nature480 ( 7375 ), 57 – 62 ( 2011 ). 
  • Wataya T , AndoS , MugurumaKet al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation . Proc. Natl Acad. Sci. USA105 ( 33 ), 11796 – 11801 ( 2008 ).
  • Leung AW , Kent MorestD , LiJY. Differential BMP signaling controls formation and differentiation of multipotent preplacodal ectoderm progenitors from human embryonic stem cells . Dev. Biol.379 ( 2 ), 208 – 220 ( 2013 ).
  • Dincer Z , PiaoJ , NiuLet al. Specification of functional cranial placode derivatives from human pluripotent stem cells . Cell Rep.5 ( 5 ), 1387 – 1402 ( 2013 ). 
  • Van Vliet P , WuSM , ZaffranS , PuceatM. Early cardiac development: a view from stem cells to embryos . Cardiovasc. Res.96 ( 3 ), 352 – 362 ( 2012 ).
  • Lancaster MA , RennerM , MartinCA.et al. Cerebral organoids model human brain development and microcephaly . Nature501 ( 7467 ), 373 – 379 ( 2013 ).
  • Eiraku M , WatanabeK , Matsuo-TakasakiMet al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals . Cell Stem Cell3 ( 5 ), 519 – 532 ( 2008 ).
  • Meyer JS , ShearerRL , CapowskiEEet al. Modeling early retinal development with human embryonic and induced pluripotent stem cells . Proc. Natl. Acad. Sci. USA106 ( 39 ), 16698 – 16703 ( 2009 ).
  • Ahmad S , StewartR , YungSet al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche . Stem Cells25 ( 5 ), 1145 – 1155 ( 2007 ).
  • Childs GV , YangHY , TobinRB , WilberJF , KubekM . Effects of thyroidectomy, propylthiouracil, and thyroxine on pituitary content and immunocytochemical staining of thyrotropin (TSH) and thyrotropin releasing hormone (TRH) . J. Histochem. Cytochem.29 ( 3 ), 357 – 363 ( 1981 ).
  • Vidal S , HorvathE , KovacsK , CohenSM , LloydRV , ScheithauerBW . Transdifferentiation of somatotrophs to thyrotrophs in the pituitary of patients with protracted primary hypothyroidism . Virchows Arch.436 ( 1 ), 43 – 51 ( 2000 ).
  • Vidal S , HorvathE , KovacsK , LloydRV , SmythHS . Reversible transdifferentiation: interconversion of somatotrophs and lactotrophs in pituitary hyperplasia . Mod. Pathol.14 ( 1 ), 20 – 28 ( 2001 ).
  • Radian S , CoculescuM , MorrisJF . Somatotroph to thyrotroph cell transdifferentiation during experimental hypothyroidism - a light and electron-microscopy study . J. Cell. Mol. Med.7 ( 3 ), 297 – 306 ( 2003 ).
  • Frawley LS , BoockforFR . Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue . Endocr. Rev.12 ( 4 ), 337 – 355 ( 1991 ).
  • Takahashi K , YamanakaS . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors . Cell126 ( 4 ), 663 – 676 ( 2006 ).
  • Takahashi K , TanabeK , OhnukiMet al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors . Cell131 ( 5 ), 861 – 872 ( 2007 ).
  • Miyazaki S , YamamotoH , MiyoshiNet al. Emerging methods for preparing iPS cells . Jpn J. Clin. Oncol.42 ( 9 ), 773 – 779 ( 2012 ).
  • Wang H , DoeringLC . Induced pluripotent stem cells to model and treat neurogenetic disorders . Neural. Plast. 2012 , 346053 ( 2012 ).
  • Ladewig J , KochP , BrustleO . Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies . Nat. Rev. Mol. Cell Biol.14 ( 4 ), 225 – 236 ( 2013 ).
  • Porter TE , WilesCD , FrawleyLS . Evidence for bidirectional interconversion of mammotropes and somatotropes: rapid reversion of acidophilic cell types to pregestational proportions after weaning . Endocrinology129 ( 3 ), 1215 – 1220 ( 1991 ).
  • Stefaneanu L , KovacsK , LloydRVet al. Pituitary lactotrophs and somatotrophs in pregnancy: a correlative in situ hybridization and immunocytochemical study . Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.62 ( 5 ), 291 – 296 ( 1992 ).
  • Inoue K , SakaiT . Conversion of growth hormone-secreting cells into prolactin-secreting cells and its promotion by insulin and insulin-like growth factor-1 in vitro . Exp. Cell Res.195 ( 1 ), 53 – 58 ( 1991 ).
  • Kakeya T , TakeuchiS , TakahashiS . Epidermal growth factor, insulin, and estrogen stimulate development of prolactin-secreting cells in cultures of GH3 cells . Cell Tissue Res.299 ( 2 ), 237 – 243 ( 2000 ).
  • Horvath E , LloydRV , KovacsK . Propylthiouracyl-induced hypothyroidism results in reversible transdifferentiation of somatotrophs into thyroidectomy cells. A morphologic study of the rat pituitary including immunoelectron microscopy . Lab. Invest.63 ( 4 ), 511 – 520 ( 1990 ).
  • Childs GV . Development of gonadotropes may involve cyclic transdifferentiation of growth hormone cells . Arch. Physiol. Biochem.110 ( 1–2 ), 42 – 49 ( 2002 ).
  • Marro S , PangZP , YangNet al. Direct lineage conversion of terminally differentiated hepatocytes to functional neurons . Cell Stem Cell9 ( 4 ), 374 – 382 ( 2011 ).
  • Pulichino AM , Vallette-KasicS , TsaiJP , CoutureC , GauthierY , DrouinJ . Tpit determines alternate fates during pituitary cell differentiation . Genes Dev.17 ( 6 ), 738 – 747 ( 2003 ).
  • Lee EJ , RussellT , HurleyL , JamesonJL . Pituitary transcription factor-1 induces transient differentiation of adult hepatic stem cells into prolactin-producing cells in vivo . Mol. Endocrinol.19 ( 4 ), 964 – 971 ( 2005 ).
  • U HS , AlilainW , SaljooqueF . Fetal brain progenitor cells transdifferentiate to fates outside the nervous system . Mol. Endocrinol.16 ( 11 ), 2645 – 2656 ( 2002 ).
  • Schepers AG , SnippertHJ , StangeDEet al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas . Science337 ( 6095 ), 730 – 735 ( 2012 ).
  • Cozzio A , PassegueE , AytonPM , KarsunkyH , ClearyML , WeissmanIL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors . Genes Dev.17 ( 24 ), 3029 – 3035 ( 2003 ).
  • Wong SY , ReiterJF . Wounding mobilizes hair follicle stem cells to form tumors . Proc. Natl Acad. Sci. USA108 ( 10 ), 4093 – 4098 ( 2010 ).
  • Lapouge G , YoussefKK , VokaerBet al. Identifying the cellular origin of squamous skin tumors . Proc. Natl Acad. Sci. USA108 ( 18 ), 7431 – 7436 ( 2011 ).
  • Garcia-Lavandeira M , SaezC , Diaz-RodriguezEet al. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors . J. Clin. Endocrinol. Metab.97 ( 1 ), E80–E87 ( 2012 ).
  • Gaston-Massuet C , AndoniadouCL , SignoreMet al. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans . Proc. Natl. Acad. Sci. USA108 ( 28 ), 11482 – 11487 ( 2011 ).
  • Bilic J , Izpisua BelmonteJC . Concise review: induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart?Stem Cells30 ( 1 ), 33 – 41 ( 2012 ).
  • Ang YS , Gaspar-MaiaA , LemischkaIR , BernsteinE . Stem cells and reprogramming: breaking the epigenetic barrier?Trends Pharmacol. Sci.32 ( 7 ), 394 – 401 ( 2011 ).
  • Araki R , UdaM , HokiYet al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells . Nature494 ( 7435 ), 100 – 104 ( 2013 ).
  • Pearl JI , KeanLS , DavisMM , WuJC . Pluripotent stem cells: immune to the immune system?Sci. Transl. Med.4 ( 164 ), 164ps125 ( 2012 ).
  • Lui KO , BoydAS , CobboldSP , WaldmannH , FairchildPJ . A role for regulatory T cells in acceptance of ESC-derived tissues transplanted across an major histocompatibility complex barrier . Stem Cells28 ( 10 ), 1905 – 1914 ( 2010 ).
  • Robinton DA , DaleyGQ . The promise of induced pluripotent stem cells in research and therapy . Nature481 ( 7381 ), 295 – 305 ( 2012 ).
  • Cheng LT , SunLT , TadaT . Genome editing in induced pluripotent stem cells . Genes Cells17 ( 6 ), 431 – 438 ( 2012 ).
  • Perez-Pinera P , OusteroutDG , GersbachCA . Advances in targeted genome editing . Curr. Opin. Chem. Biol.16 ( 3–4 ), 268 – 277 ( 2012 ).
  • Fomina-Yadlin D , KubicekS , VetereA , HeKH , SchreiberSL , WagnerBK . GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity . PLoS ONE7 ( 1 ), e28808 ( 2012 ).
  • Fomina-Yadlin D , KubicekS , WalpitaDet al. Small-molecule inducers of insulin expression in pancreatic alpha-cells . Proc. Natl Acad. Sci. USA107 ( 34 ), 15099 – 15104 ( 2010 ).
  • Budry L , LafontC , El YandouziTet al. Related pituitary cell lineages develop into interdigitated 3D cell networks . Proc. Natl Acad. Sci. USA108 ( 30 ), 12515 – 12520 ( 2011 ).
  • Gremeaux L , FuQ , ChenJ , VankelecomH . Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland . Stem Cells Dev.21 ( 5 ), 801 – 813 ( 2012 ).
  • Le Tissier PR , HodsonDJ , LafontC , FontanaudP , SchaefferM , MollardP . Anterior pituitary cell networks . Front. Neuroendocrinol.33 ( 3 ), 252 – 266 ( 2012 ).
  • Mollard P , HodsonDJ , LafontC , RizzotiK , DrouinJ . A tridimensional view of pituitary development and function . Trends Endocrinol. Metab.23 ( 6 ), 261 – 269 ( 2012 ).
  • Bible E , QutachiO , ChauDY , AlexanderMR , ShakesheffKM , ModoM . Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles . Biomaterials33 ( 30 ), 7435 – 7446 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.