161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stem Cell Injection in the Hindlimb Skeletal Muscle Enhances Neurorepair in Mice with Spinal Cord Injury

, , , , &
Pages 579-591 | Published online: 05 Nov 2014

References

  • Budh CN , OsterakerAL . Life satisfaction in individuals with a spinal cord injury and pain . Clin. Rehabil.21 , 89 – 96 ( 2007 ).
  • Bracken MB . Steroids for acute spinal cord injury . Cochrane Database Syst. Rev.1 , CD001046 ( 2012 ).
  • Bracken MB , CollinsWF , FreemanDFet al. Efficacy of methylprednisolone in acute spinal cord injury . J. Am. Med. Assoc.251 , 45 – 52 ( 1984 ).
  • Bracken MB , ShepardMJ , CollinsWFet al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study . J. Neurosurg.76 , 23 – 31 ( 1992 ).
  • Bracken MB , ShepardMJ , CollinsWFet al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study . New. Engl. J. Med.322 , 1405 – 1411 ( 1990 ).
  • Tator CH . Update on the pathophysiology and pathology of acute spinal cord injury . Brain Pathology5 , 407 – 413 ( 1995 ).
  • McDonald JW , SadowskyC . Spinal-cord injury . Lancet359 , 417 – 425 ( 2002 ).
  • Sasaki M , HonmouO , AkiyamaYet al. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons . Glia35 , 26 – 34 ( 2001 ).
  • Akiyama Y , RadtkeC , HonmouO , KocsisJD . Remyelination of the spinal cord following intravenous delivery of bone marrow stromal cells . Glia39 , 229 – 236 ( 2002 ).
  • Akiyama Y , RadtkeC , KocsisJD . Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells . J. Neurosci.22 , 6623 – 6630 ( 2002 ).
  • Chopp M , ZhangXH , LiYet al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation . Neuroreport11 , 3001 – 3005 ( 2000 ).
  • Hofstetter CP , SchwarzEJ , HessDet al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery . Proc. Natl Acad. Sci. USA99 , 2199 – 2204 ( 2002 ).
  • Wu S , SuzukiY , EjiriYet al. Bone marrow stromal cells enhance differentiation of co-cultured neurosphere cells and promote regeneration of the injured spinal cord . J. Neurosci. Res.72 , 343 – 351 ( 2003 ).
  • Ankeny DP , McTigueDM , JakemanLB . Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats . Exp. Neurol.190 , 17 – 31 ( 2004 ).
  • Koshizuka S , OkadaS , OkawaAet al. Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice . J. Neuropathol. Exp. Neurol.63 , 64 – 72 ( 2004 ).
  • Ohta M , SuzukiY , NodaT , EjiriYet al. Bone marrow stromal cells infused into the rat cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation . Exp. Neurol.187 , 266 – 278 ( 2004 ).
  • Zurita M , VaqueroJ . Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation . Neuroreport15 , 1105 – 1108 ( 2004 ).
  • Neuhuber B , Timothy-HimesB , ShumskyJS , GalloG , FischerI . Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations . Brain Res.1035 , 73 – 85 ( 2005 ).
  • Sigurjonsson OE , PerreaultMC , EgelandT , GloverJC . Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord . Proc. Natl Acad. Sci. USA102 , 5227 – 5232 ( 2005 ).
  • Sykova E , JendlovaP . Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord . Ann. NY Acad. Sci.1049 , 146 – 160 ( 2005 ).
  • Cízková D , RosochaJ , VanickýI , JergováS , CízekM . Transplantation of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat . Cell Mol. Neurobiol.26 , 1167 – 1180 ( 2006 ).
  • Himes BT , NeuhuberB , ColemanCet al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord . Neurorehabil. Neural Repair20 , 278 – 296 ( 2006 ).
  • Vaquero J , ZuritaM , OyaS , SantosM . Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration ? Neurosci. Letts.398 , 129 – 134 ( 2006 ).
  • Caplan AI . Adult mesenchymal stem cells for tissue engineering versus regenerative medicine . J. Cell. Physiol.213 , 341 – 347 ( 2007 ).
  • Syková E , HomolaA , MazanecRet al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury . Cell Transplant.15 , 675 – 687 ( 2006 ).
  • Deda H , InciMC , KürekçiAEet al. Treatment of chronic spinal cord injured patients with autologous bone marrow derived hematopoietic stem cell transplantation: 1-year followup . Cytotherapy10 , 565 – 574 ( 2008 ).
  • Kumar AA , KumarSR , NarayananR , ArulK , BaskaranM . Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a Phase I/II clinical safety and primary efficacy data . Exp. Clin. Transplant.7 , 241 – 248 ( 2009 ).
  • Di Nicola M , Carlo-StellaC , MagniMet al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or non-specific mitogenic stimuli . Blood99 , 3838 – 3843 ( 2002 ).
  • Bartholomew A , SturgeonC , SiatskasMet al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo . Exp. Hematol.30 , 42 – 48 ( 2002 ).
  • Jiang XX , ZhangY , LiuBet al. Human mesenchymal stem cells inhibit differentiation and function of monocyte derived dendritic cells . Blood105 , 4120 – 4126 ( 2005 ).
  • Corcione A , BenvenutoF , FerrettiEet al. Human mesenchymal stem cells modulate B-cell functions . Blood107 , 367 – 372 ( 2006 ).
  • Abrams MB , DominguezC , PernoldKet al. Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury . Restor. Neurol. Neurosci.27 , 301 – 321 ( 2009 ).
  • Crigler L , RobeyRC , AsawachaicharnA , GauppD , PhinneyDG . Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis . Exp. Neurol.198 , 54 – 64 ( 2006 ).
  • Wright KT , El MasriW , OsmanAet al. Bone marrow stromal cells stimulate neurite outgrowth over neural proteoglycans (CSPG), myelin associated glycoprotein and Nogo-A . Biochem. Biophys. Res. Commun.354 , 559 – 566 ( 2007 ).
  • Phinney DG , BaddooM , DutreilM , GauppD , LaiWT , IsakovaIA . Murine mesenchymal stem cells transplanted to the central nervous system of neonatal versus adult mice exhibit distinct engraftment kinetics and express receptors that guide neuronal cell migration . Stem Cells Dev.15 , 437 – 447 ( 2006 ).
  • Son BR , Marquez-CurtisLA , KuciaMet al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases . Stem Cells24 , 1254 – 1264 ( 2006 ).
  • d’Ortho MP , WillH , AtkinsonSet al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases . Eur. J. Biochem.250 , 751 – 757 ( 1997 ).
  • Passi A , NegriniD , AlbertiniR , MiserocchiG , De LucaG . The sensitivity of versican from rabbit lung to gelatinase A (MMP-2) and B (MMP-9) and its involvement in the development of hydraulic lung edema . FEBS Letts456 , 93 – 96 ( 1999 ).
  • Suzuki M , McHughJ , TorkCet al. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS . Mol. Ther.16 , 2002 – 2010 ( 2008 ).
  • Pastor D , Viso-LeonMC , Botella-LópezA , MoraledaJM , JonesJ , MartinezS . Bone marrow transplantation in hindlimb muscles of motor-neuron degenerative mice reduces neuronal death and improves motor function . Stem Cells Dev.22 , 1633 – 1644 ( 2013 ).
  • Curtis R , GreenD , LindsayRM , WilkinGP . Up-regulation of GAP-43 and growth of axons in rat spinal cord after compression injury . J. Neurocytol.22 , 51 – 64 ( 1993 ).
  • Jones J , Jaramillo-MerchánJ , BuenoC , PastorD , Viso-LeónMC , MartínezS . Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia . Neurobiol. Dis.40 , 415 – 423 ( 2010 ).
  • Jones J , EstiradoA , RedondoC , MartinezS . Stem cells from wildtype and Friedreich’s ataxia mice present similar neuroprotective properties in dorsal root ganglia cells . PLoS ONE8 , e62807  ( 2013 ).
  • Pastor D , Viso-LeonMC , JonesJet al. Comparative effects between bone marrow and mesenchymal stem cell transplantation in GDNF expression and motor function recovery in a motorneuron degenerative mouse model . Stem Cell Rev. Rep.8 , 445 – 458 ( 2012 ).
  • Hennig J , FriedburgH . Clinical applications and methodological developments of the RARE technique . Magn. Reson. Imaging6 , 391 – 395 ( 1988 ).
  • Hennig J , NauerthA , FriedburgH . RARE imaging: a fast imaging method for clinical MR . Magn. Reson. Med.3 , 823 – 833 ( 1986 ).
  • Willenbrock S , KnippenbergS , MeierMet al. In vivo MRI of intraspinally injected SPIO-labelled human CD34+ cells in a transgenic mouse model of ALS. In Vivo . 26 , 31 – 38 ( 2012 ).
  • Calvo AC , ManzanoR , Atencia-CibreiroGet al. Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice . PLoS ONE7 , e32632  ( 2012 ).
  • Gu YL , YinLW , ZhangZet al. Neurotrophin expressions in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement . Cell Mol. Neurobiol.32 , 1089 – 1097 ( 2012 ).
  • Quertainmont R , CantinieauxD , BotmanOet al. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions . PLoS ONE7 , e39500  ( 2012 ).
  • Uchida K , NakajimaH , HiraiTet al. The retrograde delivery of adenovirus vector carrying the gene for brain derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice . Spine37 , 2125 – 2135 ( 2012 ).
  • Corti S , LocatelliF , DonadoniCet al. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia . J. Neuroscience Res.70 , 721 – 733 ( 2002 ).
  • Satake K , LouJ , LenkeLG . Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue . Spine29 , 1971 – 1979 ( 2004 ).
  • Bakshi A , BarshingerAL , SwangerSAet al. Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation . J. Neurotrauma23 , 55 – 65 ( 2006 ).
  • Courtney P , SamdaniAF , BetzRRet al. Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods . Spine34 , 328 – 334 ( 2009 ).
  • Song XY , LiF , ZhangFH , ZhongJH , ZhouXF . Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury . PLoS ONE3 , e1707  ( 2008 ).
  • PrimerBank . http://pga.mgh.harvard.edu/primerbank

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.