539
Views
0
CrossRef citations to date
0
Altmetric
Review

Biodegradable Elastomers for Biomedical Applications and Regenerative Medicine

, , , &
Pages 385-398 | Published online: 17 Jun 2014

References

  • Gopferich A . Mechanisms of polymer degradation and erosion . Biomaterials 17 , 103 – 114 ( 1996 ).
  • Gopferich A , Langer R . Modeling of polymer erosion . Macromolecules 26 , 4105 – 4112 ( 1993 ).
  • Van Dijkhuizen-Radersma R , Moroni L , van Apeldoorn AA , Zhang Z , Grijpma DW . Degradable polymers for tissue engineering . In: Tissue Engineering (1st Edition). Van Blitterswijk CA ( Ed .). Elsevier Academic Press , CA, USA , 193 – 221 ( 2008 ).
  • Anderson JM , Rodriguez A , Chang DT . Foreign body reaction to biomaterials . Semin. Immunol. 20 , 86 – 100 ( 2008 ).
  • Labow RS , Meek E , Matheson LA , Santerre JP . Human macrophage-mediated biodegradation of polyurethanes – assessment of candidate enzyme activities . Biomaterials 23 , 3969 – 3975 ( 2002 ).
  • Cortizo MS , Molinuevo MS , Cortizo AM . Biocompatibility and biodegradation of polyester and polyfumarate-based scaffolds for bone tissue engineering . J. Tissue Eng. Regen. Med. 2 , 33 – 42 ( 2008 ).
  • Vacanti J , Vacanti CA . The history and scope of tissue engineering . In: Principles of Tissue Engineering (3rd Edition). Lanza R , Langer R , Vacanti J ( Eds ). Elsevier Academic Press , CA, USA , 3 – 7 ( 2007 ).
  • Langer R , Vacanti JP . Tissue engineering . Science 260 , 920 – 926 ( 1993 ).
  • Drury JL , Mooney DJ . Hydrogels for tissue engineering – scaffold design variables and applications . Biomaterials 24 , 4337 – 4351 ( 2003 ).
  • Freed LE , Vunjak-Novakovic G , Biron RJ et al. Biodegradable polymer scaffolds for tissue engineering . Biotechnology (NY) 12 , 689 – 693 ( 1994 ).
  • Hubbell JA . Matrix effects . In: Principles of Tissue Engineering (3rd Edition). Lanza R , Langer R , Vacanti J ( Eds ). Elsevier Academic Press , CA, USA , 297 – 308 ( 2007 ).
  • Hubbell JA . Materials as morphogenetic guides in tissue engineering . Curr. Opin. Biotechnol. 14 , 551 – 558 ( 2003 ).
  • Rosso F , Marino G , Giordano A , Barbarisi M , Parmeggiani D , Barbarisi A . Smart materials as scaffolds for tissue engineering . J. Cell. Physiol. 203 , 465 – 470 ( 2005 ).
  • Murphy MB , Mikos AG . Polymer scaffold fabrication . In: Principles of Tissue Engineering (3rd Edition). Lanza R , Langer R , Vacanti J ( Eds ), Elsevier Academic Press , CA, USA , 309 – 321 ( 2007 ).
  • Yang SF , Leong KF , Du ZH , Chua CK . The design of scaffolds for use in tissue engineering. Part 1, traditional factors . Tissue Eng. 7 , 679 – 689 ( 2001 ).
  • Lynn AK , Yannas IV , Bonfield W . Antigenicity and immunogenicity of collagen . J. Biomed. Mater. Res. B Appl. Biomater. 71B , 343 – 354 ( 2004 ).
  • Deng M , Kumbar SG , Wan Y , Toti US , Allcock HR , Laurencin CT . Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications . Soft Matter 6 , 3119 – 3132 ( 2010 ).
  • Allcock HR , Morozowich NL . Bioerodible polyphosphazenes and their medical potential . Polym. Chem. 3 , 578 – 590 ( 2012 ).
  • Seal BL , Otero TC , Panitch A . Polymeric biomaterials for tissue and organ regeneration . Mater. Sci. Eng. R Rep. 34 , 147 – 230 ( 2001 ).
  • Bergsma JE , Debruijn WC , Rozema FR , Bos RRM , Boering G . Late degradation tissue-response to poly(l-lactide) bone plates and screws . Biomaterials 16 , 25 – 31 ( 1995 ).
  • Discher DE , Janmey P , Wang YL . Tissue cells feel and respond to the stiffness of their substrate . Science 310 , 1139 – 1143 ( 2005 ).
  • Engler AJ , Sen S , Sweeney HL , Discher DE . Matrix elasticity directs stem cell lineage specification . Cell 126 , 677 – 689 ( 2006 ).
  • Trappmann B , Gautrot JE , Connelly JT et al. Extracellular matrix tethering regulates stem cell fate . Nat. Mater. 11 , 642 – 649 ( 2012 ).
  • Kong HJ , Liu JD , Riddle K , Matsumoto T , Leach K , Mooney DJ . Non-viral gene delivery regulated by stiffness of cell adhesion substrates . Nat. Mater. 4 , 460 – 464 ( 2005 ).
  • Chandran KB . Cardiovascular Biomechanics. New York University Press , NY, USA ( 1992 ).
  • Thambyah A , Nather A , Goh J . Mechanical properties of articular cartilage covered by the meniscus . Osteoarthr. Cartil. 14 , 580 – 588 ( 2006 ).
  • Gupta BS , Kasyanov VA . Biomechanics of human common carotid artery and design of novel hybrid textile compliant vascular grafts . J. Biomed. Mater. Res. 34 , 341 – 349 ( 1997 ).
  • Puskas JE , Chen Y . Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement . Biomacromolecules 5 , 1141 – 1154 ( 2004 ).
  • Lang RM , Cholley BP , Korcarz C , Marcus RH , Shroff SG . Measurement of regional elastic properties of the human aorta – a new application of transesophageal echocardiography with automated border detection and calibrated subclavian pulse tracings . Circulation 90 , 1875 – 1882 ( 1994 ).
  • Balguid A , Rubbens MP , Mol A et al. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets – relevance for tissue engineering . Tissue Eng. 13 , 1501 – 1511 ( 2007 ).
  • Chen QZ , Bismarck A , Hansen U et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue . Biomaterials 29 , 47 – 57 ( 2008 ).
  • Lee JM , Boughner DR . Mechanical properties of human pericardium – differences in viscoelastic response when compared with canine pericardium . Circ. Res. 57 , 475 – 481 ( 1985 ).
  • Millesi HMD , Zoch GMD , Reihsner RP . Mechanical properties of peripheral nerves . Clin. Orthop. 314 , 76 – 83 ( 1995 ).
  • Mazuchowski EL , Thibault LE . Biomechanical properties of the human spinal cord and pia mater . In: Summer Bioengineering Conference. Key Biscayne , FL, USA , 1205 – 1206 ( 2003 ).
  • Cowin SC , van Buskirk WC , Ashman RB . Properties of bone . In: Handbook of Bioengineering. Skalak R , Chien S ( Eds ). McGraw-Hill , NY, USA , 2.1–2.27 ( 1987 ).
  • Benoit DSW , Durney AR , Anseth KS . Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation . Tissue Eng. 12 , 1663 – 1673 ( 2006 ).
  • Sung HJ , Meredith C , Johnson C , Galis ZS . The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis . Biomaterials 25 , 5735 – 5742 ( 2004 ).
  • Mark JE , Erman B . Rubberlike Elasticity: A Molecular Primer (2nd Edition). Cambridge University Press , Cambridge, UK ( 2007 ).
  • Amsden B . Curable, biodegradable elastomers – emerging biomaterials for drug delivery and tissue engineering . Soft Matter 3 , 1335 – 1348 ( 2007 ).
  • Serrano MC , Chung EJ , Ameer GA . Advances and applications of biodegradable elastomers in regenerative medicine . Adv. Funct. Mater. 20 , 192 – 208 ( 2010 ).
  • Shi R , Chen DF , Liu QY et al. Recent advances in synthetic bioelastomers . Int. J. Mol. Sci. 10 , 4223 – 4256 ( 2009 ).
  • Stokes K , McVenes R , Anderson JM . Polyurethane elastomer biostability . J. Biomater. Appl. 9 , 321 – 354 ( 1995 ).
  • Santerre JP , Labow RS , Duguay DG , Erfle D , Adams GA . Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes . J. Biomed. Mater. Res. 28 , 1187 – 1199 ( 1994 ).
  • Schubert MA , Wiggins MJ , Schaefer MP , Hiltner A , Anderson JM . Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers . J. Biomed. Mater. Res. 29 , 337 – 347 ( 1995 ).
  • Guan JJ , Fujimoto KL , Sacks MS , Wagner WR . Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications . Biomaterials 26 , 3961 – 3971 ( 2005 ).
  • Van Tienen TG , Heijkants RGJC , Buma P , de Groot JH , Pennings AJ , Veth RPH . Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes . Biomaterials 23 , 1731 – 1738 ( 2002 ).
  • Bakkum EA , Trimbos JB , Dalmeijer RAJ , van Blitterswijk CA . Preventing postoperative intraperitoneal adhesion formation with polyactive (TM), a degradable copolymer acting as a barrier . J. Mater. Sci. Mater. Med. 6 , 41 – 45 ( 1995 ).
  • Bezemer JM , Radersma R , Grijpma DW , Dijkstra PJ , van Blitterswijk CA , Feijen J . Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. Modulation of release rate . J. Control. Release 67 , 249 – 260 ( 2000 ).
  • Claase MB , Grijpma DW , Mendes SC , de Bruijn JD , Feijen J . Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing . J. Biomed. Mater. Res. 64A , 291 – 300 ( 2003 ).
  • Pego AP , Poot AA , Grijpma DW , Feijen J . Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers . J. Mater. Sci. Mater. Med. 14 , 767 – 773 ( 2003 ).
  • Zhang Z , Grijpma DW , Feijen J . Triblock copolymers based on 1,3-trimethylene carbonate and lactide as biodegradable thermoplastic elastomers . Macromol. Chem. Phys. 205 , 867 – 875 ( 2004 ).
  • Xie J , Ihara M , Jung YM et al. Mechano-active scaffold design based on microporous poly(L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering – dependence of porosity on compression force-applied mechanical behaviors . Tissue Eng. 12 , 449 – 458 ( 2006 ).
  • Jeong SI , Kwon JH , Lim JI et al. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds . Biomaterials 26 , 1405 – 1411 ( 2005 ).
  • Wang YD , Ameer GA , Sheppard BJ , Langer R . A tough biodegradable elastomer . Nat. Biotechnol. 20 , 602 – 606 ( 2002 ).
  • Yang J , Webb AR , Ameer GA . Novel citric acid-based biodegradable elastomers for tissue engineering . Adv. Mater. 16 , 511 – 516 ( 2004 ).
  • Pomerantseva I , Krebs N , Hart A , Neville CM , Huang AY , Sundback CA . Degradation behavior of poly(glycerol sebacate) . J. Biomed. Mater. Res. 91A , 1038 – 1047 ( 2009 ).
  • Bettinger CJ , Bruggeman JP , Borenstein JT , Langer R . In vitro and in vivo degradation of poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) elastomers . J. Biomed. Mater. Res. 91A , 1077 – 1088 ( 2009 ).
  • Sun ZJ , Chen C , Sun MZ et al. The application of poly(glycerol sebacate) as biodegradable drug carrier . Biomaterials 30 , 5209 – 5214 ( 2009 ).
  • Chen QZ , Bismarck A , Hansen U et al. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue . Biomaterials 29 , 47 – 57 ( 2008 ).
  • Motlagh D , Yang J , Lui KY , Webb AR , Ameer GA . Hemocompatibility evaluation of poly(glycerol sebacate) In vitro for vascular tissue engineering . Biomaterials 27 , 4315 – 4324 ( 2006 ).
  • Sundback CA , Shyu JY , Wang YD et al. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material . Biomaterials 26 , 5454 – 5464 ( 2005 ).
  • Storey RF , Warren SC , Allison CJ , Puckett AD . Methacrylate-endcapped poly(d,l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing . Polymer 38 , 6295 – 6301 ( 1997 ).
  • He S , Timmer MD , Yaszemski MJ , Yasko AW , Engel PS , Mikos AG . Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate)-diacrylate macromers as crosslinking agents and characterization of their degradation products . Polymer 42 , 1251 – 1260 ( 2001 ).
  • Hou QP , Grijpma DW , Feijen J . Creep-resistant elastomeric networks prepared by photo crosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers . Acta Biomater. 5 , 1543 – 1551 ( 2009 ).
  • Chapanian R , Tse MY , Pang SC , Amsden BG . The role of oxidation and enzymatic hydrolysis on the in vivo degradation of trimethylene carbonate-based photocrosslinkable elastomers . Biomaterials 30 , 295 – 306 ( 2009 ).
  • Nijst CLE , Bruggeman JP , Karp JM et al. Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate) . Biomacromolecules 8 , 3067 – 3073 ( 2007 ).
  • Mahdavi A , Ferreira L , Sundback C et al. A biodegradable and biocompatible gecko-inspired tissue adhesive . Proc. Natl Acad. Sci. USA 105 , 2307 – 2312 ( 2008 ).
  • Ifkovits JL , Devlin JJ , Eng G , Martens TP , Vunjak-Novakovic G , Burdick JA . Biodegradable fibrous scaffolds with tunable properties formed from photo-cross-linkable poly(glycerol sebacate) . ACS Appl. Mater. Interfaces 1 , 1878 – 1886 ( 2009 ).
  • Williams CG , Malik AN , Kim TK , Manson PN , Elisseeff JH . Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation . Biomaterials 26 , 1211 – 1218 ( 2005 ).
  • Filipczak K , Wozniak M , Ulanski P et al. Poly(epsilon-caprolactone) biomaterial sterilized by e-beam irradiation . Macromol. Biosci. 6 , 261 – 273 ( 2006 ).
  • Pego AP , Grijpma DW , Feijen J . Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks . Polymer 44 , 6495 – 6504 ( 2003 ).
  • Albertsson AC , Sjoling M . Homopolymerization of 1,3-dioxan-2-one to high-molecular-weight poly(trimethylene carbonate) . J. Macromol. Sci. Pure Appl. Chem. 29 , 43 – 54 ( 1992 ).
  • Zhang Z , Kuijer R , Bulstra SK , Grijpma DW , Feijen J . The in vivo and in vitro degradation behavior of poly(trimethylene carbonate) . Biomaterials 27 , 1741 – 1748 ( 2006 ).
  • Bat E , van Kooten TG , Feijen J , Grijpma DW . Resorbable elastomeric networks prepared by photocrosslinking of high-molecular-weight poly(trimethylene carbonate) with photoinitiators and poly(trimethylene carbonate) macromers as crosslinking aids . Acta Biomater. 7 , 1939 – 1948 ( 2011 ).
  • Jie C , Zhu KJ , Yang SL . Preparation, characterization and biodegradable characteristics of poly(1,3-trimethylene carbonate-co-glycolide) . Polym. Inter. 41 , 369 – 375 ( 1996 ).
  • Schappacher M , Fabre T , Mingotaud AF , Soum A . Study of a (trimethylene carbonate-co-epsilon-caprolactone) polymer – part 1: preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts . Biomaterials 22 , 2849 – 2855 ( 2001 ).
  • Zhang HH , Huang ZQ , Sun BW , Guo JX , Wang JL , Chen YQ . Y-shaped poly(ethylene glycol) and poly(trimethylene carbonate) amphiphilic copolymer – synthesis and for drug delivery . J. Polym. Sci. A Polym. Chem. 46 , 8131 – 8140 ( 2008 ).
  • Pego AP , Siebum B , Van Luyn MJA et al. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering . Tissue Eng. 9 , 981 – 994 ( 2003 ).
  • Pego AP , Van Luyn MJA , Brouwer LA et al. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone – degradation and tissue response . J. Biomed. Mater. Res. 67A , 1044 – 1054 ( 2003 ).
  • Fabre T , Schappacher M , Bareille R et al. Study of a (trimethylene carbonate-co-epsilon-caprolactone) polymer – part 2: in vitro cytocompatibility analysis and in vivo cell response of a new nerve guide . Biomaterials 22 , 2951 – 2958 ( 2001 ).
  • Song Y , Wennink JWH , Kamphuis MMJ et al. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering . Tissue Eng. A 17 , 381 – 387 ( 2011 ).
  • Schüller-Ravoo S , Feijen J , Grijpma DW . Preparation of flexible and elastic poly(trimethylene carbonate) structures by stereolithography . Macromol. Biosci. 11 , 1662 – 1671 ( 2011 ).
  • Foks MA , Dijkhuis KAJ , Grijpma DW , Brouwer LA , Van Luyn MJA , Feijen J . Properties of gamma-irradiated poly(trimethylene carbonate) . J. Control. Release 101 , 325 – 327 ( 2005 ).
  • Bat E , Plantinga JA , Harmsen MC et al. Trimethylene carbonate and ∊-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation . Biomacromolecules 9 , 3208 – 3215 ( 2008 ).
  • Bat E , Plantinga JA , Harmsen MC , Van Luyn MJA , Feijen J , Grijpma DW . In vivo behaviour of trimethylene carbonate and ∊-caprolactone based (co)polymer networks: degradation and tissue response . J. Biomed. Mater. Res. 95A , 940 – 949 ( 2010 ).
  • Bat E , Feijen J , Grijpma DW . Biodegradable elastomeric networks prepared by gamma-irradiation of poly(trimethylene carbonate) in the presence of pentaerythritol triacrylate . Biomacromolecules 11 , 2692 – 2699 ( 2010 ).
  • Ellä V , Gomes ME , Reis RL , Törmälä P , Kellomäki M . Studies of P (L/D)LA 96/4 non-woven scaffolds and fibres; properties, wettability and cell spreading before and after intrusive treatment methods . J. Mater. Sci. Mater. Med. 18 , 1253 – 1261 ( 2007 ).
  • Moutos FT , Guilak F . Functional properties of cell-seeded three-dimensionally woven poly(epsilon caprolactone) scaffolds for cartilage tissue engineering . Tissue Eng. A 16 , 1291 – 1301 ( 2010 ).
  • Ellä V , Annala T , Länsman S , Nurminen M , Kellomäki M . Knitted polylactide 96/4 L/D structures and scaffolds for tissue engineering . Biomatter 1 , 102 – 113 ( 2011 ).
  • Almeida LR , Martins AR , Fernandes EM et al. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability . Acta Biomater. 9 , 8167 – 8181 ( 2013 ).
  • Shah PN , Manthe RL , Lopina ST , Yun YH . Electrospinning of L-tyrosine polyurethanes for potential biomedical applications . Polymer 50 , 2281 – 2289 ( 2009 ).
  • Buttafoco L , Kolkman NG , Engbers-Buijtenhuijs P et al. Electrospinning of collagen and elastin for tissue engineering applications . Biomaterials 27 , 724 – 734 ( 2006 ).
  • Townsend-Nicholson A , Jayasinghe SN . Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds . Biomacromolecules 7 , 3364 – 3369 ( 2006 ).
  • Jayasinghe SN . Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine . Analyst 138 , 2215 – 2223 ( 2013 ).
  • Behl M , Lendlein A . Triple-shape polymers . J. Mater. Chem. 20 , 3335 – 3345 ( 2010 ).
  • Nöchel U , Reddy CS , Uttamchand NK , Kratz K , Behl M , Lendlein A . Shape-memory properties of hydrogels having a poly(∊-caprolactone) crosslinker and switching segment in an aqueous environment . Eur. Polym. J. 49 , 2457 – 2466 ( 2013 ).
  • Sharifi S , Grijpma DW . Resilient amorphous networks prepared by photo-crosslinking high-molecular-weight d,l-lactide and trimethylene carbonate macromers: mechanical properties and shape-memory behavior . Macromol. Biosci. 12 , 1423 – 1435 ( 2012 ).
  • Sharifi S , Van Kooten TG , Kranenburg HJC et al. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network . Biomaterials 34 , 8105 – 8113 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.