223
Views
0
CrossRef citations to date
0
Altmetric
Methodology

Wharton’s Jelly Mesenchymal Stromal/Stem Cells Derived Under Chemically Defined Animal Product-Free Low Oxygen Conditions are Rich in MSCA-1+ Subpopulation

, , , , , , , , , , , , & show all
Pages 723-732 | Published online: 28 Nov 2014

References

  • Friedenstein AJ , ChailakhjanRK , LalykinaKS . The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells . Cell Tissue Kinet.3 ( 4 ), 393 – 403 ( 1974 ).
  • Horwitz EM , Le BlancK , DominiciMet al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement . Cytotherapy7 ( 5 ), 393 – 395 ( 2005 ).
  • Jones EA , EnglishA , KinseySEet al. Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow . Cytometry B Clin. Cytom.70 ( 6 ), 391 – 399 ( 2006 ).
  • Sobiesiak M , SivasubramaniyanK , HermannCet al. The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase . Stem Cells Dev.19 ( 5 ), 669 – 677 ( 2010 ).
  • Bühring HJ , TremlS , CerabonaF , de ZwartP , KanzL , SobiesiakM . Phenotypic characterization of distinct human bone marrow-derived MSC subsets . Ann. NY Acad. Sci.1176 , 124 – 134 ( 2009 ).
  • Battula VL , TremlS , BareissPMet al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1 . Haematologica94 ( 2 ), 173 – 184 ( 2009 ).
  • Gronthos S , FitterS , DiamondP , SimmonsPJ , ItescuS , ZannettinoAC . A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells . Stem Cells Dev.16 ( 6 ), 953 – 963 ( 2007 ).
  • Pikuła M , Marek-TrzonkowskaN , WardowskaA , RenkielskaA , TrzonkowskiP . Adipose tissue-derived stem cells in clinical applications . Expert Opin. Biol. Ther.13 ( 10 ), 1357 – 1370 ( 2013 ).
  • Tran TT , KahnCR . Transplantation of adipose tissue and stem cells: role in metabolism and disease . Nat. Rev. Endocrinol.6 ( 4 ), 195 – 213 ( 2010 ).
  • La Rocca G , Lo IaconoM , CorselloT , CorraoS , FarinaF , AnzaloneR . Human Wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy . Curr. Stem Cell Res. Ther.8 ( 1 ), 100 – 113 ( 2013 ).
  • Troyer DL , WeissML . Wharton’s jelly-derived cells are a primitive stromal cell population . Stem Cells26 ( 3 ), 591 – 599 ( 2008 ).
  • Hass R , KasperC , BöhmS , JacobsR . Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC . Cell Commun. Signal.14 ( 9 ), 12 ( 2011 ).
  • Lo Iacono M , AnzaloneR , CorraoS , ZummoG , FarinaF , La RoccaG . Nonclassical type I HLAs and B7 costimulators revisited: analysis of expression and immunomodulatory role in undifferentiated and differentiated MSC isolated from human umbilical cord Wharton’s jelly . Histol. Histopathol.26 ( Suppl. 1 ), 313 ( 2011 ).
  • Weiss ML , AndersonC , MedicettySet al. Immune properties of human umbilical cord Wharton’s jelly-derived cells . Stem Cells26 ( 11 ), 2865 – 2874 ( 2008 ).
  • Sobolewski K , BańkowskiE , ChyczewskiL , JaworskiS . Collagen and glycosaminoglycans of Wharton’s jelly . Biol. Neonate71 ( 1 ), 11 – 21 ( 1997 ).
  • Corrao S , La RoccaG , Lo IaconoM , CorselloT , FarinaF , AnzaloneR . Umbilical cord revisited: from Wharton’s jelly myofibroblasts to mesenchymal stem cells . Histol Histopathol.28 ( 10 ), 1235 – 1244 ( 2013 ).
  • De Kock J , NajarM , BolleynJet al. Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential . Stem Cells Dev.21 ( 18 ), 3309 – 3323 ( 2012 ).
  • Huang YC , ParoliniO , La RoccaG , DengL . Umbilical cord versus bone marrow-derived mesenchymal stromal cells . Stem Cells Dev.21 ( 15 ), 2900 – 2903 ( 2012 ).
  • Reinisch A , StrunkD . Isolation and animal serum free expansion of human umbilical cord derived mesenchymal stromal cells (MSCs) and endothelial colony forming progenitor cells (ECFCs) . J. Vis. Exp.32 , 1525 ( 2009 ).
  • Marigo I , DazziF . The immunomodulatory properties of mesenchymal stem cells . Semin. Immunopathol.33 ( 6 ), 593 – 602 ( 2011 ).
  • Margossian T , ReppelL , MakdissyN , StoltzJF , BensoussanD , HuselsteinC . Mesenchymal stem cells derived from Wharton’s jelly: comparative phenotype analysis between tissue and in vitro expansion . Biomed. Mater. Eng.22 ( 4 ), 243 – 54 ( 2012 ).
  • Hu WH , MoXM , WaltersWM , BrambillaR , BetheaJR . TNAP, a novel repressor of NF-kappaB-inducing kinase, suppresses NF-kappaB activation . J. Biol. Chem.279 ( 34 ), 35975 – 35983 ( 2004 ).
  • Pike AF , KramerNI , BlaauboerBJ , SeinenW , BrandsR . A novel hypothesis for an alkaline phosphatase ‘rescue’ mechanism in the hepatic acute phase immune response . Biochim. Biophys. Acta.1832 ( 12 ), 2044 – 2056 ( 2013 ).
  • Hessle L , JohnsonKA , AndersonHCet al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization . Proc. Natl Acad. Sci. USA99 ( 14 ), 9445 – 9449 ( 2002 ).
  • Wennberg C , HessleL , LundbergPet al. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice . J. Bone Miner. Res.15 ( 10 ), 1879 – 1888 ( 2000 ).
  • Hanics J , BarnaJ , XiaoJ , MillánJL , FontaC , NégyessyL . Ablation of TNAP function compromises myelination and synaptogenesis in the mouse brain . Cell Tissue Res.349 ( 2 ), 459 – 471 ( 2012 ).
  • Capelli C , GottiE , MorigiMet al. Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate . Cytotherapy13 ( 7 ), 786 – 801 ( 2011 ).
  • Fonta C , NegyessyL , RenaudL , BaroneP . Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex . J. Comp. Neurol.486 ( 2 ), 179 – 196 ( 2005 ).
  • Tisato V , NareshK , GirdlestoneJ , NavarreteC , DazziF . Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease . Leukemia21 ( 9 ), 1992 – 1999 ( 2007 ).
  • Noda Y , GotoY , UmaokaY , ShiotaniM , NakayamaT , MoriT . Culture of human embryos in alpha modification of Eagle’s medium under low oxygen tension and low illumination . Fertil. Steril.62 ( 5 ), 1022 – 1027 ( 1994 ).
  • Waldenström U , EngströmAB , HellbergD , NilssonS . Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study . Fertil. Steril.91 ( 6 ), 2461 – 2465 ( 2009 ).
  • Sun R , CelliA , CrumrineDet al. Lowered humidity produces human epidermalequivalents with enhanced barrier properties . Tissue Eng. Part C Methods doi:10.1089/ten.tec.2014.0065 ( 2014 ) ( Epub ahead of print ).
  • Petrova A , CelliA , JacquetLet al. 3D In vitro model of a functional epidermalpermeability barrier from human embryonic stem cells and induced pluripotent stem cells. . Stem Cell Reports2 ( 5 ), 675 – 689 ( 2014 ).
  • Yang S , PilgaardL , ChaseLGet al. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells . Tissue Eng. Part C Methods18 ( 8 ), 593 – 602 ( 2012 ).
  • López L , SeshareddyK , TrevinoE , CoxJ , WeissML . Evaluating the impact of oxygen concentration and plating density on human Wharton’s jelly-derived mesenchymal stromal cells . Open Tissue Eng. Regen. Med. J.4 , 82 – 94 ( 2011 ).
  • Nekanti U , DastidarS , VenugopalP , ToteyS , TaM . Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia . Int. J. Biol. Sci.6 ( 5 ), 499 – 512 ( 2010 ).
  • Drela K , SarnowskaA , SiedleckaPet al. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner . Cytotherapy16 ( 7 ), 881 – 892 ( 2014 ).
  • Lavrentieva A , MajoreI , KasperC , HassR . Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells . Cell Commun. Signal.16 ( 8 ), 18 ( 2010 ).
  • Julavijitphong S , WichitwiengratS , TirawanchaiN , RuangvutilertP , VantanasiriC , PhermthaiT . A xeno-free culture method that enhances Wharton’s jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures . Cytotherapy16 ( 5 ), 683 – 691 ( 2014 ).
  • Nekanti U , MohantyL , VenugopalP , BalasubramanianS , ToteyS , TaM . Optimization and scale-up of Wharton’s jelly-derived mesenchymal stem cells for clinical applications . Stem Cell Res.5 ( 3 ), 244 – 254 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.