446
Views
0
CrossRef citations to date
0
Altmetric
Review

Biologic Scaffold for CNS Repair

, &
Pages 367-383 | Published online: 17 Jun 2014

References

  • McDonald JW , Sadowsky C . Spinal-cord injury . Lancet 359 ( 9304 ), 417 – 425 ( 2002 ).
  • Thurman DJ , Alverson C , Dunn KA , Guerrero J , Sniezek JE . Traumatic brain injury in the United States: a public health perspective . J. Head Trauma Rehabil. 14 ( 6 ), 602 – 615 ( 1999 ).
  • Noble J , Munro CA , Prasad VS , Midha R . Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries . J. Trauma 45 ( 1 ), 116 – 122 ( 1998 ).
  • Volpato FZ , Führmann T , Migliaresi C , Hutmacher DW , Dalton PD . Using extracellular matrix for regenerative medicine in the spinal cord . Biomaterials 34 ( 21 ), 4945 – 4955 ( 2013 ).
  • Yamaguchi Y . Lecticans: organizers of the brain extracellular matrix . Cell. Mol. Life Sci. 57 ( 2 ), 276 – 289 ( 2000 ).
  • Hagg T , Oudega M . Degenerative and spontaneous regenerative processes after spinal cord injury . J. Neurotrauma 23 ( 3–4 ), 263 – 280 ( 2006 ).
  • Brook GA , Plate D , Franzen R et al. Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat . J. Neurosci. Res. 53 ( 1 ), 51 – 65 ( 1998 ).
  • Beattie MS , Bresnahan JC , Komon J et al. Endogenous repair after spinal cord contusion injuries in the rat . Exp. Neurol. 148 ( 2 ), 453 – 463 ( 1997 ).
  • Yiu G , He Z . Glial inhibition of CNS axon regeneration . Nat. Rev. Neurosci. 7 ( 8 ), 617 – 627 ( 2006 ).
  • David S , Aguayo A . Axonal elongation into peripheral nervous system ‘bridges’ after central nervous system injury in adult rats . Science 214 ( 4523 ), 931 – 933 ( 1981 ).
  • Grandpre T , Li S , Strittmatter S . Nogo-66 receptor antagonist peptide promotes axonal regeneration . Nature 417 ( 6888 ), 547 – 551 ( 2002 ).
  • Shechter R , Miller O , Yovel G et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus . Immunity 38 ( 3 ), 555 – 569 ( 2013 ).
  • Shechter R , Raposo C , London A , Sagi I , Schwartz M . The glial scar–monocyte interplay: a pivotal resolution phase in spinal cord repair . PLoS ONE 6 ( 12 ), e27969 ( 2011 ).
  • Shechter R , London A , Varol C et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice . PLoS Med. 6 ( 7 ), e1000113 ( 2009 ).
  • Van Amerongen MJ , Harmsen MC , Van Rooijen N , Petersen AH , Van Luyn MJA . Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice . Am. J. Pathol. 170 ( 3 ), 818 – 829 ( 2007 ).
  • Martinez FO , Gordon S , Locati M , Mantovani A . Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression . J. Immunol. 177 ( 10 ), 7303 – 7311 ( 2006 ).
  • Karimi-Abdolrezaee S , Schut D , Wang J , Fehlings MG . Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury . PLoS ONE 7 ( 5 ), e37589 ( 2012 ).
  • Mothe AJ , Tator CH . Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat . Neuroscience 131 ( 1 ), 177 – 187 ( 2005 ).
  • Ke Y , Chi L , Xu R , Luo C , Gozal D , Liu R . Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice . Stem Cells 24 ( 4 ), 1011 – 1019 ( 2006 ).
  • Li S , Strittmatter SM . Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury . J. Neurosci. 23 ( 10 ), 4219 – 4227 ( 2003 ).
  • Bradbury EJ . Chondroitinase ABC promotes functional recovery after spinal cord injury . Nature 416 ( 6881 ), 636–640 ( 2002 ).
  • Garcia-Alias G , Lin R , Akrimi SF , Story D , Bradbury EJ , Fawcett JW . Therapeutic time window for the application of chondroitinase ABC after spinal cord injury . Exp. Neurol. 210 ( 2 ), 331 – 338 ( 2008 ).
  • Stichel CC , Hermanns S , Luhmann HJ et al. Inhibition of collagen IV deposition promotes regeneration of injured CNS axons . Eur. J. Neurosci. 11 ( 2 ), 632 – 646 ( 1999 ).
  • Kawano H , Li H-P , Sango K , Kawamura K , Raisman G . Inhibition of collagen synthesis overrides the age-related failure of regeneration of nigrostriatal dopaminergic axons . J. Neurosci. Res. 80 ( 2 ), 191 – 202 ( 2005 ).
  • Hefti F . Neurotrophic factor therapy for nervous system degenerative diseases . J. Neurobiol. 25 ( 11 ), 1418 – 1435 ( 1994 ).
  • Markus A , Patel TD , Snider WD . Neurotrophic factors and axonal growth . Curr. Opin. Neurobiol. 12 ( 5 ), 523 – 531 ( 2002 ).
  • Ruff CA , Wilcox JT , Fehlings MG . Cell-based transplantation strategies to promote plasticity following spinal cord injury . Exp. Neurol. 235 ( 1 ), 78 – 90 ( 2011 ).
  • Tetzlaff W , Okon EB , Karimi-Abdolrezaee S et al. A systematic review of cellular transplantation therapies for spinal cord injury . J. Neurotrauma 28 ( 8 ), 1611 – 1682 ( 2011 ).
  • Prang P , Müller R , Eljaouhari A et al. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels . Biomaterials 27 ( 19 ), 3560 – 3569 ( 2006 ).
  • Stokols S , Tuszynski MH . The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury . Biomaterials 25 ( 27 ), 5839 – 5846 ( 2004 ).
  • Teng YD , Lavik EB , Qu X et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells . Proc. Natl Acad. Sci. USA 99 ( 5 ), 3024 – 3029 ( 2002 ).
  • Oudega M , Gautier SE , Chapon P et al. Axonal regeneration into Schwann cell grafts within resorbable poly(α-hydroxyacid) guidance channels in the adult rat spinal cord . Biomaterials 22 ( 10 ), 1125 – 1136 ( 2001 ).
  • Willerth SM , Sakiyama-Elbert SE . Approaches to neural tissue engineering using scaffolds for drug delivery . Adv. Drug Deliv. Rev. 59 ( 4–5 ), 325 – 338 ( 2007 ).
  • Ye J-H , Houle JD . Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons . Exp. Neurol. 143 ( 1 ), 70 – 81 ( 1997 ).
  • Deng L-X , Deng P , Ruan Y et al. A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury . J. Neurosci. 33 ( 13 ), 5655 – 5667 ( 2013 ).
  • Badylak SF . The extracellular matrix as a scaffold for tissue reconstruction . Semin. Cell Dev. Biol. 13 ( 5 ), 377 – 383 ( 2002 ).
  • Badylak SF . The extracellular matrix as a biologic scaffold material . Biomaterials 28 ( 25 ), 3587 – 3593 ( 2007 ).
  • Gilbert TW , Sellaro TL , Badylak SF . Decellularization of tissues and organs . Biomaterials 27 ( 19 ), 3675 – 3683 ( 2006 ).
  • Badylak SF , Vorp DA , Spievack AR et al. Esophageal reconstruction with ECM and muscle tissue in a dog model . J. Surg. Res. 128 ( 1 ), 87 – 97 ( 2005 ).
  • Wolf MT , Daly KA , Reing JE , Badylak SF . Biologic scaffold composed of skeletal muscle extracellular matrix . Biomaterials 33 ( 10 ), 2916 – 2925 ( 2013 ).
  • Valentin JE , Turner NJ , Gilbert TW , Badylak SF . Functional skeletal muscle formation with a biologic scaffold . Biomaterials 31 ( 29 ), 7475 – 7484 ( 2010 ).
  • DeQuach J , Yuan S , Goldstein L , Christman K . Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds . Tissue Eng. Part A 17 ( 21–22 ), 2583 – 2592 ( 2011 ).
  • Wang J , Liou A , Ren Z et al. Neurorestorative effect of urinary bladder matrix-mediated neural stem cell transplantation following traumatic brain injury in rats . CNS Neurol. Disord. Drug Targets 12 ( 3 ), 413 – 425 ( 2013 ).
  • Medberry CJ , Crapo PM , SIU Bf et al. Hydrogels derived from central nervous system extracellular matrix . Biomaterials 34 ( 4 ), 1033 – 1040 ( 2012 ).
  • Crapo PM , Medberry CJ , Reing JE et al. Biologic scaffolds composed of central nervous system extracellular matrix . Biomaterials 33 ( 13 ), 3539 – 3547 ( 2012 ).
  • Crapo PM , Gilbert TW , Badylak SF . An overview of tissue and whole organ decellularization processes . Biomaterials 32 ( 12 ), 3233 – 3243 ( 2011 ).
  • Bissell M , Barcellos-Hoff M . The influence of extracellular matrix on gene expression: is structure the message? J. Cell. Sci. Suppl. 8 , 327 – 343 ( 1987 ).
  • Berthiaume F , Moghe PV , Toner M , Yarmush ML . Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration . FASEB J. 10 ( 13 ), 1471 – 1484 ( 1996 ).
  • Petersen OW , RØnnov-Jessen L , Howlett AR , Bissell MJ . Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells . Proc. Natl Acad. Sci. USA 89 ( 19 ), 9064 – 9068 ( 1992 ).
  • Tanaka H , Murphy CL , Murphy C , Kimura M , Kawai S , Polak JM . Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone . J. Cell. Biochem. 93 ( 3 ), 454 – 462 ( 2004 ).
  • Calve S , Odelberg SJ , Simon H-G . A transitional extracellular matrix instructs cell behavior during muscle regeneration . Dev. Biol. 344 ( 1 ), 259 – 271 ( 2010 ).
  • McClelland R , Wauthier E , Uronis J , Reid L . Gradients in the liver’s extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors . Tissue Eng. Part A 14 ( 1 ), 59 – 70 ( 2008 ).
  • Bosman FT , Stamenkovic I . Functional structure and composition of the extracellular matrix . J. Pathol. 200 ( 4 ), 423 – 428 ( 2003 ).
  • Taipale J , Keski-Oja J . Growth factors in the extracellular matrix . FASEB J. 11 ( 1 ), 51 – 59 ( 1997 ).
  • Zantop T , Gilbert TW , Yoder MC , Badylak SF . Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction . J. Orthop. Res. 24 ( 6 ), 1299 – 1309 ( 2006 ).
  • Turner N , Yates AJ , Weber D et al. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction . Tissue Eng. Part A 16 ( 11 ), 3309 – 3317 ( 2010 ).
  • Valentin J , Stewart-Akers A , Gilbert T , Badylak S . Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds . Tissue Eng. Part A 15 ( 7 ), 1687 – 1694 ( 2009 ).
  • Adair-Kirk TL , Senior RM . Fragments of extracellular matrix as mediators of inflammation . Int. J. Biochem. Cell Biol. 40 ( 6–7 ), 1101 – 1110 ( 2008 ).
  • Davis GE , Bayless KJ , Davis MJ , Meininger GA . Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules . Am. J. Pathol. 156 ( 5 ), 1489 – 1498 ( 2000 ).
  • Reing J , Zhang L , Myers-Irvin J et al. Degradation products of extracellular matrix affect cell migration and proliferation . Tissue Eng. Part A 15 ( 3 ), 605 – 614 ( 2009 ).
  • Homandberg G , Williams J , Grant D , Schumacher B , Eisenstein R . Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth . Am. J. Pathol. 120 ( 3 ), 327 – 332 ( 1985 ).
  • Agrawal V , Tottey S , Johnson S , Freund J , Siu B , Badylak S . Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation . Tissue Eng. Part A 17 ( 19–20 ), 2435 – 2443 ( 2011 ).
  • Ge M , Ryan TJ , Lum H , Malik AB . Fibrinogen degradation product fragment D increases endothelial monolayer permeability . Am. J. Physiol. Lung Cell. Mol. Physiol. 261 ( 4 ), L283 – L289 ( 1991 ).
  • Rowland F , Donovan M , Picciano P , Wilner G , Kreutzer D . Fibrin-mediated vascular injury. Identification of fibrin peptides that mediate endothelial cell retraction . Am. J. Pathol. 117 ( 3 ), 418 – 428 ( 1984 ).
  • Sage E . Pieces of eight: bioactive fragments of extracellular proteins as regulators of angiogenesis . Trends Cell Biol. 7 ( 5 ), 182 – 186 ( 1997 ).
  • Brown BN , Valentin JE , Stewart-Akers AM , McCabe GP , Badylak SF . Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component . Biomaterials 30 ( 8 ), 1482 – 1491 ( 2009 ).
  • Zhong C , Chrzanowska-Wodnicka M , Brown J , Shaub A , Belkin AM , Burridge K . Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly . J. Cell Biol. 141 ( 2 ), 539 – 551 ( 1998 ).
  • Ingham KC , Brew SA , Migliorini M . Type I collagen contains at least 14 cryptic fibronectin binding sites of similar affinity . Arch. Biochem. Biophys. 407 ( 2 ), 217 – 223 ( 2002 ).
  • Voytik-Harbin SL , Brightman AO , Kraine MR , Waisner B , Badylak SF . Identification of extractable growth factors from small intestinal submucosa . J. Cell. Biochem. 67 ( 4 ), 478 – 491 ( 1997 ).
  • Hodde J , Record R , Liang H , Badylak S . Vascular endothelial growth factor in porcine-derived extracellular matrix . Endothelium 8 ( 1 ), 11 – 24 ( 2001 ).
  • McDevitt CA , Wildey GM , Cutrone RM . Transforming growth factor-β1 in a sterilized tissue derived from the pig small intestine submucosa . J. Biomed. Mater. Res. Part A 67A ( 2 ), 637 – 640 ( 2003 ).
  • Hodde J , Hiles M . Bioactive FGF-2 in sterilized extracellular matrix . Wounds 13 , 195 ( 2001 ).
  • Hodde J , Ernst D , Hiles M . An investigation of the long-term bioactivity of endogenous growth factor in Oasis wound matrix . J. Wound Care 14 ( 1 ), 23 – 25 ( 2005 ).
  • Brown BN , Londono R , Tottey S et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials . Acta Biomater. 8 ( 3 ), 978 – 987 ( 2012 ).
  • Badylak SF , Valentin JE , Ravindra AK , McCabe GP , Stewart-Akers AM . Macrophage phenotype as a determinant of biologic scaffold remodeling . Tissue Eng. Part A 14 ( 11 ), 1835 – 1842 ( 2008 ).
  • Mosser D , Edwards J . Exploring the full spectrum of macrophage activation . Nat. Rev. Immunol. 8 ( 12 ), 958 – 969 ( 2008 ).
  • Dandy WE . Treatment of rhinorrhea and otorrhea . Arch. Surg. 49 ( 2 ), 75 – 85 ( 1944 ).
  • Cushing H . A study of a series of wounds involving the brain and its enveloping structures . Br. J. Surg. 5 ( 20 ), 558 – 684 ( 1917 ).
  • Hoshi K , Yoshino H , Urata J , Nakamura Y , Yanagawa H , Sato T . Creutzfeldt-Jakob disease associated with cadaveric dura mater grafts in Japan . Neurology 55 ( 5 ), 718 – 721 ( 2000 ).
  • Haywood AM . Transmissible spongiform encephalopathies . N. Engl. J. Med. 337 ( 25 ), 1821 – 1828 ( 1997 ).
  • Kline DG . Dural replacement with resorbable collagen . Arch. Surg. 91 ( 6 ), 924 – 929 ( 1965 ).
  • Jannetta P , Whayne TJ . Formaldehyde-treated, regenerated collagen film and film-laminate as a substitute for dura mater . Surg. Forum 16 , 435 – 437 ( 1965 ).
  • Lee JF , Odom GL , Tindall GT . Experimental evaluation of silicone-coated dacron and collagen fabric-film laminate as dural substitutes . J. Neurosurg. 27 ( 6 ), 558 – 564 ( 1967 ).
  • Laquerriere A , Yun J , Tiollier JR , Hemet J , Tadie M . Experimental evaluation of bilayered human collagen as a dural substitute . J. Neurosurg. 78 ( 3 ), 487 – 491 ( 1993 ).
  • Narotam P , Van Dellen J , Bhoola K , Raidoo D . Experimental evaluation of collagen sponge as a dural graft . Br. J. Neurosurg. 7 ( 6 ), 635 – 641 ( 1993 ).
  • Narotam PK , Van Dellen JR , Bhoola KD . A clinicopathological study of collagen sponge as a dural graft in neurosurgery . J. Neurosurg. 82 ( 3 ), 406 – 412 ( 1995 ).
  • Zerris VA , James KS , Roberts JB , Bell E , Heilman CB . Repair of the dura mater with processed collagen devices . J. Biomed. Mater. Res. B Appl. Biomater. 83B ( 2 ), 580 – 588 ( 2007 ).
  • Barbolt TA , Odin M , Léger M , Kangas L , Holste J , Liu SH . Biocompatibility evaluation of dura mater substitutes in an animal model . Neurol. Res. 23 ( 8 ), 813 – 820 ( 2001 ).
  • Knopp U , Christmann F , Reusche E , Sepehrnia A . A new collagen biomatrix of equine origin versus a cadaveric dura graft for the repair of dural defects – a comparative animal experimental study . Acta Neurochir. 147 ( 8 ), 877 – 887 ( 2005 ).
  • Gazzeri R , Neroni M , Alfieri A et al. Transparent equine collagen biomatrix as dural repair. A prospective clinical study . Acta Neurochir. 151 ( 5 ), 537 – 543 ( 2009 ).
  • Parlato C , Nuzzo G , Luongo M et al. Use of a collagen biomatrix (TissuDura) for dura repair: a long-term neuroradiological and neuropathological evaluation . Acta Neurochir. 153 ( 1 ), 142 – 147 ( 2011 ).
  • Chaplin J , Costantino P , Wolpoe M , Bederson J , Griffey E , Zhang W . Use of an acellular dermal allograft for dural replacement: an experimental study . Neurosurgery 45 ( 2 ), 320 – 327 ( 1999 ).
  • Warren W , Medary M , Dureza C et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment . Neurosurgery 46 ( 6 ), 1391 – 1396 ( 2000 ).
  • Islam S , Ogane K , Ohkuma H , Suzuki S . Usefulness of acellular dermal graft as a dural substitute in experimental model . Surg. Neurol. 61 ( 3 ), 297 – 302 ( 2004 ).
  • Cobb MA , Badylak SF , Janas W , Boop FA . Histology after dural grafting with small intestinal submucosa . Surg. Neurol. 46 ( 4 ), 389 – 393 ( 1996 ).
  • Cobb MA , Badylak SF , Janas W , Simmons-Byrd A , Boop FA . Porcine small intestinal submucosa as a dural substitute . Surg. Neurol. 51 ( 1 ), 99 – 104 ( 1999 ).
  • Zin ZK , Brian DM , Jennifer EV , Stephanie KS , Raymond JG , Christine ES . High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury . J. Neural. Eng. 8 ( 4 ), 046033 ( 2011 ).
  • Lin C-M , Lin J-W , Chen Y-C et al. Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats . Surg. Neurol. 72 , S50 – S54 ( 2009 ).
  • Cui FZ , Tian WM , Hou SP , Xu QY , Lee IS . Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering . J. Mater. Sci. Mater. Med. 17 ( 12 ), 1393 – 1401 ( 2006 ).
  • Horn EM , Beaumont M , Shu XZ et al. Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury . J. Neurosurg. Spine 6 ( 2 ), 133 – 140 ( 2007 ).
  • Wei YT , Tian WM , Yu X et al. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain . Biomed. Mater. 2 ( 3 ), S 142 ( 2007 ).
  • Hou S , Xu Q , Tian W et al. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin . J. Neurosci. Methods 148 ( 1 ), 60 – 70 ( 2005 ).
  • King VR , Alovskaya A , Wei DYT , Brown RA , Priestley JV . The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury . Biomaterials 31 ( 15 ), 4447 – 4456 ( 2010 ).
  • King VR , Hewazy D , Alovskaya A , Phillips JB , Brown RA , Priestley JV . The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat . Neuroscience 168 ( 2 ), 523 – 530 ( 2010 ).
  • King VR , Phillips JB , Hunt-Grubbe H , Brown R , Priestley JV . Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord . Biomaterials 27 ( 3 ), 485 – 496 ( 2006 ).
  • King VR , Henseler M , Brown RA , Priestley JV . Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat . Exp. Neurol. 182 ( 2 ), 383 – 398 ( 2003 ).
  • Phillips JB , King VR , Ward Z , Porter RA , Priestley JV , Brown RA . Fluid shear in viscous fibronectin gels allows aggregation of fibrous materials for CNS tissue engineering . Biomaterials 25 ( 14 ), 2769 – 2779 ( 2004 ).
  • Spilker MH , Yannas IV , Kostyk SK , Norregaard TV , Hsu HP , Spector M . The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord . Restor. Neurol. Neurosci. 18 ( 1 ), 23 – 38 ( 2001 ).
  • Liu S , Peulve P , Jin O et al. Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots . J. Neurosci. Res. 49 ( 4 ), 425 – 432 ( 1997 ).
  • Liu S , Said G , Tadie M . Regrowth of the rostral spinal axons into the caudal ventral roots through a collagen tube implanted into hemisected adult rat spinal cord . Neurosurgery 49 ( 1 ), 143 – 150 ( 2001 ).
  • Liu S , Bodjarian N , Langlois O et al. Axonal regrowth through a collagen guidance channel bridging spinal cord to the avulsed C6 roots: functional recovery in primates with brachial plexus injury . J. Neurosci. Res. 51 ( 6 ), 723 – 734 ( 1998 ).
  • Liu T , Houle J , Xu J , Chan B , Chew S . Nanofibrous collagen nerve conduits for spinal cord repair . Tissue Eng. Part A 18 ( 9–10 ), 1057 – 1066 ( 2012 ).
  • Yoshii S , Oka M , Shima M , Akagi M , Taniguchi A . Bridging a spinal cord defect using collagen filament . Spine 28 ( 20 ), 2346 – 2351 ( 2003 ).
  • Yoshii S , Ito S , Shima M , Taniguchi A , Akagi M . Functional restoration of rabbit spinal cord using collagen-filament scaffold . J. Tissue Eng. Regen. Med. 3 ( 1 ), 19 – 25 ( 2009 ).
  • Fukushima K , Enomoto M , Tomizawa S et al. The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord . J. Med. Dent. Sci. 55 ( 1 ), 71 – 79 ( 2008 ).
  • Joosten E , Bär P , Gispen W . Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat . J. Neurosci. Res. 41 ( 4 ), 481 – 490 ( 1995 ).
  • Berry M , Hall S , Follows R , Rees L , Gregson N , Sievers J . Response of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts . J. Neurocytol. 17 ( 6 ), 727 – 744 ( 1988 ).
  • Berry M , Rees L , Hall S , Yiu P , Sievers J . Optic axons regenerate into sciatic nerve isografts only in the presence of Schwann cells . Brain Res. Bull. 20 ( 2 ), 223 – 231 ( 1988 ).
  • Hall S , Berry M . Electron microscopic study of the interaction of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts . J. Neurocytol. 18 ( 2 ), 171 – 184 ( 1989 ).
  • Li C , Zhang X , Cao R et al. Allografts of the acellular sciatic nerve and brain-derived neurotrophic factor repair spinal cord injury in adult rats . PLoS ONE 7 ( 8 ), e42813 ( 2012 ).
  • Guo S-Z , Ren X-J , Wu B , Jiang T . Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility . Spinal Cord 48 ( 7 ), 576 – 581 ( 2010 ).
  • Jiang T , Ren X , Tang J , Yin H , Wang K , Zhou C . Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds . Mater. Sci. Eng. C Mater. Biol. Appl. 33 ( 6 ), 3514 – 3521 ( 2013 ).
  • Liu J , Chen J , Liu B et al. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats . J. Neurol. Sci. 325 ( 1–2 ), 127 – 136 ( 2013 ).
  • Zhang X-Y , Xue H , Liu J-M , Chen D . Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair . J. Biomed. Mater. Res. Part A 100A ( 3 ), 578 – 587 ( 2012 ).
  • Zhang L , Zhang F , Weng Z et al. Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury . Tissue Eng. Part A 19 ( 17–18 ), 1909 – 1918 ( 2013 ).
  • Bible E , Dell’Acqua F , Solanky B et al. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI . Biomaterials 33 ( 10 ), 2858 – 2871 ( 2012 ).
  • Costa C , Tortosa R , Domã Nech A , Vidal E , Pumarola M , Bassols A . Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse . J. Chem. Neuroanat. 33 ( 3 ), 111 – 123 ( 2007 ).
  • Manuskiatti W , Maibach H . Hyaluronic acid and skin: wound healing and aging . Int. J. Dermatol. 35 ( 8 ), 539 – 544 ( 1996 ).
  • Seidlits SK , Khaing ZZ , Petersen RR et al. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation . Biomaterials 31 ( 14 ), 3930 – 3940 ( 2010 ).
  • Neumann A , Schinzel R , Palm D , Riederer P , Münch G . High molecular weight hyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaB activation and cytokine expression . FEBS Lett. 453 ( 3 ), 283 – 287 ( 1999 ).
  • Austin JW , Gilchrist C , Fehlings MG . High molecular weight hyaluronan reduces lipopolysaccharide mediated microglial activation . J. Neurochem. 122 ( 2 ), 344 – 355 ( 2012 ).
  • Campo GM , Avenoso A , Campo S , D’Ascola A , Nastasi G , Calatroni A . Molecular size hyaluronan differently modulates Toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes . Biochimie 92 ( 2 ), 204 – 215 ( 2010 ).
  • Tian W , Hou S , Ma J et al. Hyaluronic acid–poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury . Tissue Eng. 11 ( 3–4 ), 513 – 525 ( 2005 ).
  • Hou S , Tian W , Xu Q et al. The enhancement of cell adherence and inducement of neurite outgrowth of dorsal root ganglia co-cultured with hyaluronic acid hydrogels modified with Nogo-66 receptor antagonist in vitro . Neuroscience 137 ( 2 ), 519 – 529 ( 2006 ).
  • Abaskharoun M , Bellemare M , Lau E , Margolis RU . Expression of hyaluronan and the hyaluronan-binding proteoglycans neurocan, aggrecan, and versican by neural stem cells and neural cells derived from embryonic stem cells . Brain Res. 1327 ( 0 ), 6 – 15 ( 2010 ).
  • Preston M , Sherman L . Neural stem cell niches: roles for the hyaluronan-based extracellular matrix . Front Biosci. (Schol. Ed.) 3 , 1165 – 1179 ( 2011 ).
  • Pan L , Ren Y , Cui F , Xu Q . Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold . J. Neurosci. Res. 87 ( 14 ), 3207 – 3220 ( 2009 ).
  • Zhang T , Yan Y , Wang X et al. Three-dimensional gelatin and gelatin/hyaluronan hydrogel structures for traumatic brain injury . J. Bioact. Compat. Polym. 22 ( 1 ), 19 – 29 ( 2007 ).
  • Rampon C , Weiss N , Deboux C et al. Molecular mechanism of systemic delivery of neural precursor cells to the brain: assembly of brain endothelial apical cups and control of transmigration by CD44 . Stem Cells 26 ( 7 ), 1673 – 1682 ( 2008 ).
  • Cooke MJ , Wang Y , Morshead CM , Shoichet MS . Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain . Biomaterials 32 ( 24 ), 5688 – 5697 ( 2011 ).
  • Meng F , Hlady V , Tresco PA . Inducing alignment in astrocyte tissue constructs by surface ligands patterned on biomaterials . Biomaterials 33 ( 5 ), 1323 – 1335 ( 2012 ).
  • Ingham KC , Brew SA , Huff S , Litvinovich SV . Cryptic self-association sites in Type III modules of fibronectin . J. Biol. Chem. 272 ( 3 ), 1718 – 1724 ( 1997 ).
  • Martin DE , Reece MC , Maher JE , Reese AC . Tissue debris at the injury site is coated by plasma fibronectin and subsequently removed by tissue macrophages . Arch. Dermatol. 124 ( 2 ), 226 – 229 ( 1988 ).
  • Akimov SS , Belkin AM . Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin . Blood 98 ( 5 ), 1567 – 1576 ( 2001 ).
  • Proctor R . Fibronectin: an enhancer of phagocyte function . Rev. Infect. Dis. 9 ( Suppl. 4 ), S412 – S419 ( 1987 ).
  • Fukai F , Mashimo M , Akiyama K , Goto T , Tanuma S-I , Katayama T . Modulation of apoptotic cell death by extracellular matrix proteins and a fibronectin-derived antiadhesive peptide . Exp. Cell Res. 242 ( 1 ), 92 – 99 ( 1998 ).
  • Sakai T , Johnson KJ , Murozono M et al. Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis . Nat. Med. 7 , 324 – 330 ( 2001 ).
  • Yanaka K , Camarata PJ , Spellman SR et al. Synthetic fibronectin peptides and ischemic brain injury after transient middle cerebral artery occlusion in rats . J. Neurosurg. 85 ( 1 ), 125 – 130 ( 1996 ).
  • Zhao LR , Spellman S , Kim J , Duan W-M , Mccarthy JB , Low WC . Synthetic fibronectin peptide exerts neuroprotective effects on transient focal brain ischemia in rats . Brain Res. 1054 ( 1 ), 1 – 8 ( 2005 ).
  • Tate CC , Shear DA , Tate MC , Archer DR , Stein DG , Laplaca MC . Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain . J. Tissue Eng. Regen. Med. 3 ( 3 ), 208 – 217 ( 2009 ).
  • Thompson D , Buettner H . Neurite outgrowth is directed by Schwann cell alignment in the absence of other guidance cues . Ann. Biomed. Eng. 34 ( 1 ), 161 – 168 ( 2006 ).
  • Elias P , Spector M . Characterization of a bilateral penetrating brain injury in rats and evaluation of a collagen biomaterial for potential treatment . J. Neurotrauma 29 ( 11 ), 2086 – 2102 ( 2012 ).
  • Liu T , Teng WK , Chan BP , Chew SY . Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions . J. Biomed. Mater. Res. Part A 95A ( 1 ), 276 – 282 ( 2010 ).
  • Lanfer B , Hermann A , Kirsch M et al. Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen . Tissue Eng. Part A 16 ( 4 ), 1103 – 1113 ( 2010 ).
  • Wang Y , Yao M , Zhou J et al. The promotion of neural progenitor cells proliferation by aligned and randomly oriented collagen nanofibers through β1 integrin/MAPK signaling pathway . Biomaterials 32 ( 28 ), 6737 – 6744 ( 2011 ).
  • Möllers S , Hesche Li , Damink L et al. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair . Tissue Eng. Part A 15 ( 3 ), 461 – 472 ( 2009 ).
  • Marchand R , Woerly S . Transected spinal cords grafted with in situ self-assembled collagen matrices . Neuroscience 36 ( 1 ), 45 – 60 ( 1990 ).
  • Watanabe K , Nakamura M , Okano H , Toyama Y . Establishment of three-dimensional culture of neural stem/progenitor cells in collagen type-1 gel . Restor. Neurol. Neurosci. 25 ( 2 ), 109 – 117 ( 2007 ).
  • Ma W , Fitzgerald W , Liu Qy et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels . Exp. Neurol. 190 ( 2 ), 276 – 288 ( 2004 ).
  • O’Connor SM , Stenger DA , Shaffer KM , Ma W . Survival and neurite outgrowth of rat cortical neurons in three-dimensional agarose and collagen gel matrices . Neurosci. Lett. 304 ( 3 ), 189 – 193 ( 2001 ).
  • Jennie BL , Xin QB , Jeffrey GJ , Paul AD , Joyce YW . Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity . J. Neural. Eng. 4 ( 2 ), 26 ( 2007 ).
  • Elias PZ , Spector M . Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering . J. Mech. Behav. Biomed. Mater. 12 ( 0 ), 63 – 73 ( 2012 ).
  • Macaya D , Ng KK , Spector M . Injectable collagen–genipin gel for the treatment of spinal cord injury: in vitro studies . Adv. Func. Mater. 21 ( 24 ), 4788 – 4797 ( 2011 ).
  • Reichardt LF , Tomaselli KJ . Extracellular matrix molecules and their receptors: functions in neural development . Annu. Rev. Neurosci. 14 ( 1 ), 531 – 570 ( 1991 ).
  • Perris R , Perissinotto D . Role of the extracellular matrix during neural crest cell migration . Mech. Dev. 95 ( 1–2 ), 3 – 21 ( 2000 ).
  • Chen Z-L , Indyk JA , Strickland S . The hippocampal laminin matrix is dynamic and critical for neuronal survival . Mol. Biol. Cell 14 ( 7 ), 2665 – 2676 ( 2003 ).
  • Tate C , Tate M , Laplaca M . Fibronectin and laminin increase in the mouse brain after controlled cortical impact injury . J. Neurotrauma 24 ( 1 ), 226 – 230 ( 2007 ).
  • Hausmann R , Betz P . The time course of the vascular response to human brain injury – an immunohistochemical study . Int. J. Legal. Med. 113 ( 5 ), 288 – 292 ( 2000 ).
  • Tate MC , Garcia AJ , Keselowsky BG , Schumm MA , Archer DR , Laplaca MC . Specific beta1 integrins mediate adhesion, migration, and differentiation of neural progenitors derived from the embryonic striatum . Mol. Cell. Neurosci. 27 ( 1 ), 22 – 31 ( 2004 ).
  • Leone DP , Relvas JOB , Campos LS et al. Regulation of neural progenitor proliferation and survival by β1 integrins . J. Cell. Sci. 118 ( 12 ), 2589 – 2599 ( 2005 ).
  • Nakaji-Hirabayashi T , Kato K , Iwata H . Improvement of neural stem cell survival in collagen hydrogels by incorporating laminin-derived cell adhesive polypeptides . Bioconjug. Chem. 23 ( 2 ), 212 – 221 ( 2012 ).
  • Hiraoka M , Kato K , Nakaji-Hirabayashi T , Iwata H . Enhanced survival of neural cells embedded in hydrogels composed of collagen and laminin-derived cell adhesive peptide . Bioconjug. Chem. 20 ( 5 ), 976 – 983 ( 2009 ).
  • Jurga M , Dainiak MB , Sarnowska A et al. The performance of laminin-containing cryogel scaffolds in neural tissue regeneration . Biomaterials 32 ( 13 ), 3423 – 3434 ( 2011 ).
  • Yao L , Damodaran G , Nikolskaya N , Gorman AM , Windebank A , Pandit A . The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth . J. Biomed. Mater. Res. Part A 92A ( 2 ), 484 – 492 ( 2010 ).
  • Milner R , Crocker SJ , Hung S , Wang X , Frausto RF , Del Zoppo GJ . Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5 . J. Immunol. 178 ( 12 ), 8158 – 8167 ( 2007 ).
  • Xue H , Zhang X-Y , Liu J-M , Song Y , Li Y-F , Chen D . Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair . J. Biomed. Mater. Res. Part A 101A ( 1 ), 145 – 156 ( 2012 ).
  • Agrawal V , Brown BN , Beattie AJ , Gilbert TW , Badylak SF . Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues . J. Tissue Eng. Regen. Med. 3 ( 8 ), 590 – 600 ( 2009 ).
  • Crapo PM , Tottey S , Sliva PF , Badylak SF . Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering . Tissue Eng. Part A 20 ( 1–2 ), 313–323 ( 2014 ) 
  • Tottey S , Johnson SA , Crapo PM et al. The effect of source animal age upon extracellular matrix scaffold properties . Biomaterials 32 ( 1 ), 128 – 136 ( 2011 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.