67
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Microclimatic response to increasing shrub cover and its effect on Sphagnum CO2 exchange in a bog

, &
Pages 89-97 | Received 26 Jul 2011, Accepted 22 Dec 2011, Published online: 03 Dec 2015

Literature cited

  • Anderson, L. E., 1990. A checklist of Sphagnum in North America north of Mexico. Bryologist, 93, 500–501.
  • Anderson, L. E., H. A. Crum, W. R. Buck, 1990. List of the mosses of North America north of Mexico. Bryologist, 93, 448–499.
  • Adkinson, A. C. & E. R. Humphreys, 2010. The response of carbon dioxide exchange to manipulations of Sphagnum water content in an ombrotrophic bog. Ecohydrology, 4: 733–743.
  • Baret, N. & M. Chelle, 2003. Clamp: Accounting for a leaf clumping in radiative transfer modelling. Pages 985–987 in Geoscience and Remote Sensing Symposium Proceedings 2003, vol. 2, IEEE International.
  • Berendse, F., N. Van Breemen, H. Rydin, A. Buttler, M. Heijmans, M. R. Hoosbeek, J. A. Lee, E. Mitchell, T. Saarinen, H. Vasander & B. Wallén, 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology, 7: 591–598.
  • Bergamini, A. & D. Pauli, 2001. Effects of increased nutrient supply on bryophytes in montane calcareous fens. Journal of Bryology, 23: 331–339.
  • Blok, D., M. M. P. D. Heijmans, G. Schaepman-Strub, A. V. Kononov, T. C. Maximov & F. Berendse, 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology, 16: 1296–1305.
  • Breeuwer, A., M. M. P. D. Heijmans, B. J. M. Robroek & F. Berendse, 2008. The effect of temperature on growth and compeititon between Sphagnum species. Oecologia, 156: 155–167.
  • Bubier, J. L., T. R. Moore & L. A. Bledzki, 2007. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13: 1–19.
  • Dorrepaal, E., R. Aerts, J. H. C. Cornelissen, T. V. Callaghan & R. S. P. van Logtestijn, 2004. Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology, 10: 93–104.
  • Fernald, M. L., 1950. Gray's Manual of Botany. Van Nostrand Reinhold, New York.
  • Farrick, K. K,. & J. S. Price, 2009. Ericaceous shrubs on abandoned block-cut peatlands: Implications for soil water availability and Sphagnum restoration. Ecohydrology, 2: 530–540.
  • Frolking, S, N. T. Roulet, T. R. Moore, P. M. Lafleur, J. L. Bubier & P. M. Crill, 2002. Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles, 16, doi: 10.1029/2001GB001457
  • Gerdol, R., 1995. The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. Journal of Ecology, 83: 431–437.
  • Gunnarsson, U. & H. Rydin, 2000. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytologist, 147: 527–537.
  • Harley, P. C., J. D. Tenhunen, K. J. Murray & J. Beyers, 1989. Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the Foothills of the Philip Smith Mountains, Alaska. Oecologia, 79: 251–259.
  • Hayward, P. M. & R. S. Clymo, 1983. The growth of Sphagnum: experiments on, and simulations of, some effects of light flux and water table depth. Journal of Ecology, 71: 845–863.
  • Heijmans, M. M. P. D., W. J. Arp & F. Berendse, 2001. Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation. Global Change Biology, 7: 817–827.
  • Hobbie, S. E., 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66: 503–522.
  • Jauhiainen, J. & J. Silvola, 1999. Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations. Annales Botanici Fennici, 36: 11–19.
  • Johansson, L. & S. Linder, 1980. Photosynthesis of Sphagnum in different microhabitats on a subarctic mire. Ecological Bulletins, 30: 181–190.
  • Juutinen, S., J. L. Bubier & T. R. Moore, 2010. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue Bog. Ecosystems, 13: 874–887.
  • Limpens, J. & F. Berendse, 2003. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: The role of amino acid nitrogen concentration. Oecologia, 135: 339–345.
  • Limpens, J., F. Berendse & H. Klees, 2004. How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems, 7: 793–804.
  • Manninen, S., C. Woods, I. D. Leith & L. J. Sheppard, 2011. Physiological and morphological effects of longterm ammonium or nitrate deposition on the green and red (shade and open grown) Sphagnum capillifolium. Environmental and Experimental Botany, 72: 140–148.
  • Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur & N. T. Roulet, 2002. Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 90: 25–36.
  • Moore, T.R., N. T. Roulet & J. M. Waddington, 1998. Uncertainties in predicting the effect of climatic change on carbon cycling of Canadian peatlands. Climatic Change, 40: 229–245.
  • Murray, K. J., J. D. Tenhunen & R. S. Nowak, 1993. Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia, 96: 200–207.
  • Robroek, B. J. M., M. G. C. Schouten, J. Limpens, F. Berendse & H. Porter, 2009. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occuring Sphagnum mosses differing in distribution above the water table. Global Change Biology, 15: 680–691.
  • Rydin, H. & J. Jeglum. 2006. The Biology of Peatlands. Oxford University Press, New York.
  • Sato, Y., T. Kumagai, A. Kume, K. Otsuki & S. Ogawa, 2004. Experimental analysis of moisture dynamics of litter layers—the effects of rainfall conditions and leaf shapes. Hydrological Processes, 18: 3007–3018.
  • Schipperges, B. & H. Rydin, 1998. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water ontent and repeated desiccation. New Phytologist, 140: 677–684.
  • Silvola, J., 1990. Combined effects of varying water content and CO2 concentration on photosynthesis in Sphagnum fuscum. Holarctic Ecology, 13: 224–228.
  • SPSS Inc., 2000. Systat 10.0. Carey, North Carolina, USA.
  • Skre, O. & W. C. Oechel, 1981. Moss functioning in different Taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia, 48: 50–59.
  • Titus, J. E. & D. J. Wagner, 1984. Carbon balance for two Sphagnum mosses: Water balance resolves a physiological paradox. Ecology, 65: 1765–1774.
  • Turunen, J., E. Tomppo, K. Tolonen & A. Reinikainen, 2002. Estimating carbon accumulation rates of undrained mires in Finland—Application to boreal subarctic regions. Holocene, 12: 69–80.
  • Wal, R. van der, I. S. K. Pearce & R. W. Brooker, 2005. Mosses and the struggle for light in a nitrogen-polluted world. Oecologia, 142: 159–168.
  • Williams, T. G. & L. B. Flanagan, 1996. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia, 108: 38–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.