51
Views
4
CrossRef citations to date
0
Altmetric
Articles

Comparing carbon pools and tree growth in balsam fir (Abies balsamea) and black spruce (Picea mariana) forest ecosystems located along a climatic gradient

, , , , &
Pages 265-277 | Received 09 Jun 2014, Accepted 09 Dec 2014, Published online: 03 Dec 2015

Literature cited

  • Allison, S. D. & K. K. Treseder, 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 14: 2898–2909.
  • Amiro, B. D., B. J. Stocks, M. E. Alexander, M. D. Flannigan & B. M. Wotton, 2001. Fire, climate change, carbon and fuel management in the Canadian boreal forest. International Journal of Wildland Fire, 10: 405–413.
  • Apps, M. J., W. A. Kurz, R. J. Luxmoore, L. O. Nilsson, R. A. Sedjo, R. Schmidt, L. G. Simpson & T. S. Vinson, 1993. Boreal forests and tundra. Pages 39–54 in J. Wisniewski & R. N. Sampson (eds). Terrestrial Biospheric Carbon Fluxes: Quantification of Sinks and Sources of CO2. Springer, Dordrecht.
  • Barber, V., G. P. Juday & B. Finney, 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405: 668–673.
  • Bergeron, O., H. A. Margolis, T. A. Black, C. Coursolle, A. L. Dunn, A. G. Barr & S. C. Wofsy, 2007. Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada. Global Change Biology, 13: 89–107.
  • Bernier, P. Y. & G. Robitaille, 2004. A plane intersects method for estimating fine root productivity of trees from minirhizotron images. Plant and Soil, 265: 165–173.
  • Bernier, P. Y., G. Robitaille & D. Rioux, 2005. Estimating the mass density of fine roots of trees for minirhizotron-based estimates of productivity. Canadian Journal of Forest Research, 35: 1708–1713.
  • Bhatti, J. S., G. C. van Kooten, M. J. Apps, L. D. Laird, I. D. Campbell, C. Campbell, M. R. Turetsky, Z. Yu & E. Banfield, 2003. Carbon balance and climate change in boreal forests. Pages 799–855 in P. J. Burton, C. Messier, D. W. Smith & W. L. Adamowicz (eds). Towards Sustainable Management of the Boreal Forest. NRC Research Press, Ottawa, Ontario.
  • Bonan, G. B. & K. Van Cleve, 1992. Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Canadian Journal of Forest Research, 22: 629–639.
  • Bradford, J., P. Weishampel, M.-L. Smith, R. Kolka, R. A. Birdsey, S. V. Ollinger & M. G. Ryan, 2009. Detrital carbon pools in temperate forests: Magnitude and potential for landscape-scale assessment. Canadian Journal of Forest Research, 39: 802–813.
  • Brooks, J. R., L. B. Flanagan & J. R. Ehleringer, 1998. Response of boreal conifers to climate fluctuations: Indications from tree-ring widths and carbon isotope analyses. Canadian Journal of Forest Research, 28: 524–533.
  • Cocke, A. E., P. Z. Fulé & J. E. Crouse, 2005. Forest change on a steep mountain gradient after extended fire exclusion: San Francisco Peaks, Arizona, USA. Journal of Applied Ecology, 42: 814–823.
  • Colombo, S. J., W. C. Parker, N. Luckai, Q. Dang & T. Cai, 2005. The effects of forest management on carbon storage in Ontario's forests. Climate Change Research Report CCRR-03. Ontario Forest Research Institute, Ministry of Natural Resources, Toronto, Ontario.
  • Cox, R. M. & X. B. Zhu, 2003. Effects of simulated thaw on xylem cavitation, residual embolism spring dieback and shoot growth in yellow birch. Tree Physiology, 23: 615–624.
  • Cronan, C. C. & C. S. Grigal, 1995. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24: 209–226.
  • Dang, Q. L. & V. J. Lieffers, 1989. Climate and annual ring growth of black spruce in some Alberta peatlands. Canadian Journal of Botany, 67: 1885–1889.
  • Deslauriers, A. & H. Morin, 2005. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees, 19: 402–408.
  • Deslauriers, A., H. Morin, C. Urbinati & M. Carrer, 2003. Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17: 477–484.
  • Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler & J. Wisiewski, 1994. Carbon pools and flux of global forest ecosystems. Science, 263: 185–190.
  • Drobyshev, I., M. Simard, Y. Bergeron & A. Hofgaard, 2010. Does soil organic matter thickness affect climate-growth relationships in the black spruce boreal ecosystem? Ecosystems, 13: 556–574.
  • Duchesne, L. & D. Houle, 2011. Modelling day-to-day stem diameter variation and annual growth of balsam fir (Abies balsamea (L.) Mill) from daily climate. Forest Ecology and Management, 262: 863–872.
  • Dunne, J. A., J. Harte & K. J. Taylor, 2003. Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods. Ecological Monographs, 73: 69–86.
  • Farrar, J. F. & D. L. Jones, 2000. The control of carbon acquisition by roots. New Phytologist, 147: 43–53.
  • Farrar, J. L., 1995. Trees in Canada. Fitzhenry & Whiteside Ltd. and Canadian Forest Service, Ottawa, Ontario.
  • Flanagan, P. W. & K. Van Cleve, 1983. Nutrient cycling in relation to decomposition and organic matter quality. Canadian Journal of Forest Research, 13: 795–817.
  • Frank, R. M., 1990. Balsam fir. Pages 26–35 in R. M. Burns & B. H. Honkala (technical coordinators). Silvics of North America. I. Softwoods. USDA Forest Service Agriculture Handbook 654, Washington, DC.
  • Fritts, H. C., 1976. Tree Rings and Climate. Academic Press, New York, New York.
  • Girardin, M. P., A. A. Ali, C. Carcaillet, O. Blarquez, C. Hély, A. Terrier, A. Genries & Y. Bergeron, 2013. Vegetation limits the impact of a warm climate on boreal wildfires. New Phytologist, 199: 1001–1011.
  • Goldblum, D. & L. S. Rigg, 2005. Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario, Canada. Canadian Journal of Forest Research, 35: 2709–2718.
  • Gower, S. T., J. G. Vogel, J. M. Norman, C. J. Kucharik, S. J. Steele & T. K. Stow, 1997. Carbon distribution and aboveground net primary production in aspen, jack pine and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research, 102: 29029–29041.
  • Grant, R. F., 2004. Modeling topographic effects on net ecosystem productivity of boreal black spruce forests. Tree Physiology, 24: 1–18.
  • Grant, R. F., H. A. Margilis, A. G. Barr, T. A. Black, A. L. Dunn, P. Y. Bernier & O. Bergeron, 2009. Changes in net ecosystem productivity of boreal black spruce stand in response to changes in temperature at diurnal and seasonal time scales. Tree Physiology, 29: 1–17.
  • Hagemann, U., M. T. Moroni & F. Makeschin, 2009. Deadwood abundance in Labrador high-boreal black spruce forests. Canadian Journal of Forest Research, 39: 131–142.
  • Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack Jr & K. W. Cummins, 2004. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 34: 60–235.
  • Hinkel, K. M. & J. K. Hurd Jr, 2006. Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, USA. Arctic, Antarctic and Alpine Research, 38: 530–539.
  • Hofgaard, A., J. Tardif & Y. Bergeron, 1999. Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest. Canadian Journal of Forest Research, 29: 1333–1346.
  • Huang, J., J. C. Tardif, Y. Bergeron, B. Denneler, F. Berninger & M. P. Girardin, 2010. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biology, 16: 711–731.
  • Imeson, A. & H. Lavee, 1998. Soil erosion and climate change: The transect approach and the influence of scale. Geomorphology, 23: 219–227.
  • Intergovernmental Panel on Climate Change, 2007. Synthesis report. Intergovernmental Panel on Climate Change Secretariat, Geneva.
  • Johnstone, J. F. & F. S. Chapin III, 2006. Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems, 9: 268–277.
  • Kalyn, A. L. & K. C. J. Van Rees, 2006. Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 140: 236–243.
  • Kane, E. S. & J. G. Vogel, 2009. Patterns of total ecosystem carbon storage with changes in soil temperature in boreal black spruce forests. Ecosystems, 12: 322–335.
  • Krasowski, M. J. & M. B. Lavigne, 2008. Research on below-ground productivity and ecophysiology of balsam fir and sugar maple in New Brunswick. Forestry Chronicle, 84: 563–567.
  • Larsen, C. P. S. & G. M. MacDonald, 1995. Relations between tree-ring widths, climate, and annual area burned in the boreal forest of Alberta. Canadian Journal of Forest Research, 25: 1746–1755.
  • Lecompte, N. & Y. Bergeron, 2005. Successional pathways on different surficial deposits in the coniferous boreal forest of the Quebec Clay Belt. Canadian Journal of Forest Research, 35: 1984–1995.
  • Li, Z., W. A. Kurz, M. J. Apps & S. J. Reukema, 2003. Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: Recent improvements and implications for the estimation of NPP and NEP. Canadian Journal of Forest Research, 33: 126–136.
  • Litton, C. M., J. W. Raich & M. G. Ryan, 2007. Carbon allocation in forest ecosystems. Global Change Biology, 13: 2089–2109.
  • Lloyd, A. & C. Fastie, 2002. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change, 52: 481–509.
  • Luyssaert, S., I. Inglima, M. Jungs, A. D. Richardson, M. Reichsteins, D. Papale, S. L. Piao, E.-D. Schulze, L. Wingate, G. Matteucci, L. Aragao, M. Aubinet, C. Beer, C. Bernhofer, K. G. Black, D. Bonal, J.-M. Bonnefond, J. Chambers, P. Ciais, B. Cook, K. J. Davis, A. J. Dolman, B. Gielen, M. Goulden, J. Grace, A. Granier, A. Grelle, T. Griffis, T. Grünwald, G. Guidolotti, P. J. Hanson, R. Harding, D. Y. Hollinger, L. R. Hutyra, P. Kolari, B. Kruijt, W. Kutsch, F. Lagergren, T. Laurila, B. E. Law, G. Le Maire, A. Lindroth, D. Loustau, Y. Malhi, J. Mateus, M. Migliavacca, L. Misson, L. Montagnani, J. Moncrieff, E. Moors, J. W. Munger, E. Nikinmaa, S. V. Ollinger, G. Pita, C. Rebmann, O. Roupsard, N. Saigusa, M. J. Sanz, G. Seufert, C. Sierra, M.-L. Smith, J. Tang, R. Valentini, T. Vesala & I. A. Janssens, 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13: 2509–2537.
  • Margolis, H. A. & M. G. Ryan, 1997. A physiological basis for biosphere-atmosphere interactions in the boreal forest: An overview. Tree Physiology, 17: 491–499.
  • Moroni, M. T., C. H. Shaw, W. A. Kurz & G. J. Rampley, 2010. Forest carbon stocks in Newfoundland boreal forests of harvest and natural disturbance origin II: Model evaluation. Canadian Journal of Forest Research, 40: 2146–2163.
  • National Forest Inventory, 2010. Canada's National Forest Inventory. [Online] URL: https://nfi.nfis.org (Accessed on 15 October 2014)
  • Norby, R. J. & R. B. Jackson, 2000. Root dynamics and global change: Seeking an ecosystem perspective. New Phytologist, 147: 3–12.
  • Norris, C. E., S. A. Quideau, J. S. Bhatti & R. W. Wasylishen, 2011. Soil carbon stabilization in jack pine stands along the Boreal Forest Transect Case Study. Global Change Biology, 17: 480–494.
  • O'Connell, K. E. B., S. T. Gower & J. M. Norman, 2003. Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems, 6: 248–260.
  • Olesinski, J., M. J. Krasowski, M. B. Lavigne, J. A. Kershaw Jr & P. Y. Bernier, 2012. Fine root production varies with climate in balsam fir (Abies balsamea). Canadian Journal of Forest Research, 42: 364–374.
  • Ouellet, D., 1983a. Biomass equations for black spruce in Quebec. Information Report LAU-X-60. Environment Canada, Canadian Forestry Service, Laurentian Forest Research Centre, Québec, Quebec.
  • Ouellet, D., 1983b. Biomass equations for twelve commercial species in Quebec. Information Report LAU-X-62. Environment Canada, Canadian Forestry Service, Laurentian Forest Research Centre, Québec, Quebec.
  • Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch & D. Hayes, 2011. A large and persistent carbon sink in the world's forests. Science, 333: 988–993.
  • Paré, D. & B. Bernier, 1989. Origin of the phosphorus deficiency observed in declining sugar maple stands in the Quebec Appalachians. Canadian Journal of Forest Research, 19: 24–34.
  • Price, D. T. & M. J. Apps, 1995. The Boreal Forest Transect Case Study: Global change effects on ecosystem processes and carbon dynamics in boreal Canada. Water, Air and Soil Pollution, 82: 203–214.
  • Régnière, J. & R. Saint-Amant, 2008. BioSIM 9: User's manual. Information Report LAU-X-134. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, Quebec.
  • Ruess, R. W., R. L. Hendrick, A. J. Burton, K. S. Pregitzer, B. Sveinbjornssön, M. F. Allen & G. E. Maurer, 2003. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 73: 643–662.
  • SAS Institute, 2001. SAS System for Windows (release 8.02). SAS Institute Inc., Cary, North Carolina.
  • Schlesinger, W. H., 1984. Soil organic matter: A source of atmospheric CO2. Pages 111–127 in G. M. Woodwell (ed.). The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing. John Wiley & Sons, New York, New York.
  • Steele, S. J., S. T. Gower, J. G. Vogel & J. M. Norman, 1997. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 17: 577–587.
  • Strong, W. L. & G. H. La Roi, 1983. Root-system morphology of common boreal forest trees in Alberta, Canada. Canadian Journal of Forest Research, 13: 1164–1173.
  • Subedi, N. & M. Sharma, 2013. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Global Change Biology, 19: 505–516.
  • Tryon, P. R. & F. S. Chapin III, 1983. Temperature control over root growth and root biomass in taiga forest trees. Canadian Journal of Forest Research, 13: 827–833.
  • Van Wagner, C. E., 1968. The line intersect method in forest fuel sampling. Forest Science, 14: 20–26.
  • Viereck, L. A. & W. F. Johnston, 1990. Black spruce. Pages 227–237 in R. M. Burns & B. H. Honkala (technical coordinators). Silvics of North America. I. Softwoods. USDA Forest Service Agriculture Handbook 654, Washington, DC.
  • Vogel, J. G., B. P. Bond-Lamberty, E. A. G. Schuur, S. T. Gower, M. C. Mack, K. B. O'Connell, D. W. Valentine & R. W. Ruess, 2008. Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation. Global Change Biology, 14: 1503–1516.
  • Wilmking, M. & I. Myers-Smith, 2008. Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatland-forest landscape in Interior Alaska. Dendrochronologia, 25: 167–175.
  • Xing, Z., C. P.-A. Bourque, D. E. Swift, C. W. Clowater, M. Krasowski & G.-R. Meng, 2005. Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiology, 25: 1207–1217.
  • Yuan, Z. Y. & H. Y. H. Chen, 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Critical Reviews in Plant Sciences, 29: 204–221.
  • Zar, J. H., 2010. Biostatistical Analysis. 5th Edition. Pearson Prentice Hall, Upper Saddle River, New Jersey.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.