Publication Cover
Ostrich
Journal of African Ornithology
Volume 89, 2018 - Issue 2
198
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Retention of the flight-adapted avian finger-joint complex in the Ostrich helps identify when wings began evolving in dinosaurs

ORCID Icon &
Pages 173-186 | Received 17 Aug 2017, Accepted 08 Dec 2017, Published online: 30 Jan 2018

References

  • Abel O. 1911. Die Vorfahren der Vögel und ihre Lebensweise. Verhandlungen der zoologisch-botanischen Gesellschaft in Wien 61: 144–191.
  • Agnolín FL, Novas FE. 2013. Avian ancestors. Dordrecht: Springer.
  • Alix E. 1874. Essai sur l’appareil locomoteur des oiseaux. Paris: Libraire de l’Académie de Médecine.
  • Bannasch R. 1986. Morphologisch-funktionelle Untersuchung am Lokomotionsapparat der Pinguine als Grundlage für ein allgemeines Bewegungsmodell des „Unterwasserfluges“ Teil I. Gegenbaurs morphologisches Jahrbuch 132: 645–679.
  • Banzhaf W. 1929. Die Vorderextremität von Opisthocomus cristatus (Vieillot). Zeitschrift für Morphologie und Ökologie der Tiere 16: 113–233. doi: 10.1007/BF00409560
  • Barron S. 1995. Ostrich breeder management. In: Drenowatz D (ed.), The ratite encyclopedia. San Antonio: Ratite Records. pp 129–137.
  • Baumel JJ, Witmer LJ. 1993. Osteologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds), Handbook of avian anatomy: nomina anatomica avium (2nd edn). Publications of the Nuttall Ornithological Club no. 23. Cambridge, MA: Nuttall Ornithological Club. pp 45–132.
  • Beddard FE. 1898. The structure and classification of birds. London: Longmans, Green, and Co.
  • Bezuidenhout AJ. 1999. Anatomy. In: Deeming DC (ed.), The Ostrich: biology, production and health. Cambridge: Cambridge University Press. pp 13–49.
  • Bilo D. 1971. Flugbiophysik von Kleinvögeln. I. Kinematik und Aerodynamik des Flügelabschlages beim Haussperling (Passer domesticus L.). Zeitschrift für vergleichende Physiologie 71: 382–454. doi: 10.1007/BF00302374
  • Bilo D. 1972. Flugbiophysik von Kleinvögeln. II. Kinematik und Aerodynamik des Flügelaufschlages beim Haussperling (Passer domesticus L.). Zeitschrift für vergleichende Physiologie 76: 426–437. doi: 10.1007/BF00337783
  • Bonnan MF, Senter PJ. 2007. Were the basal sauropodomorph dinosaurs Plateosaurus and Massospondylus habitual quadrupeds? Special Papers in Palaeontology 77: 139–155.
  • Brusatte SL, Vremir M, Csiki–Sava Z, Turner AH, Watanabe A, Erickson GM, Norell MA. 2013. The osteology of Balaur bondoc, an island-dwelling dromaeosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bulletin of the American Museum of Natural History 374: 1–100. doi: 10.1206/798.1
  • Burch SH. 2014. Complete forelimb myology of the basal theropod dinosaur Tawa hallae based on a novel robust muscle reconstruction method. Journal of Anatomy 225: 271–297. doi: 10.1111/joa.12216
  • Campbell KE. 2008. The manus of archaeopterygians: implications for avian ancestry. Oryctos 7: 13–26.
  • Cho P, Brown R, Anderson M. 1984. Comparative gross anatomy of ratites. Zoo Biology 3: 133–144. doi: 10.1002/zoo.1430030205
  • Choiniere JN, Xu X, Clark JM, Forster CA, Guo Y, Han F. 2010. A basal alvarezsauroid theropod from the early Late Jurassic of Xinjiang, China. Science 327: 571–574. doi: 10.1126/science.1182143
  • Cobley MJ, Rayfield EJ, Barrett PM. 2013. Inter-vertebral flexibility of the Ostrich neck: implications for estimating sauropod neck flexibility. PLoS ONE 8: e72187.
  • Cracraft J. 1971. The functional morphology of the hindlimb of the domestic pigeon, Columba livia. Bulletin of the American Museum of Natural History 144: 173–268.
  • Cracraft J. 1974. Phylogeny and evolution of the ratite birds. Ibis 116: 494–521. doi: 10.1111/j.1474-919X.1974.tb07648.x
  • Czerkas SA, Feduccia A. 2014. Jurassic archosaur is a non– dinosaurian bird. Journal of Ornithology 155: 841–851. doi: 10.1007/s10336-014-1098-9
  • Dames WB. 1884. Ueber Archaeopteryx. Palæontologische Abhandlungen 2: 119–196.
  • Davies SJJF. 2002. Ratites and tinamous. Oxford: Oxford University Press.
  • Dial KP. 1992. Avian forelimb muscles and nonsteady flight: can birds fly without using the muscles in their wings? The Auk 109: 874–885. doi: 10.2307/4088162
  • Drenowatz C, Sales JD, Sarasqueta DV, Weilbrenner A. 1995. History and geography. In: Drenowatz D (ed.), The ratite encyclopedia. San Antonio: Ratite Records. pp 3–29.
  • Dzemski G, Christian A. 2007. Flexibility along the neck of the Ostrich (Struthio camelus) and consequences for the reconstruction of dinosaurs with extreme neck length. Journal of Morphology 268: 701–714. doi: 10.1002/jmor.10542
  • Elżanowski A. 2001. A new genus and species for the largest specimen of Archaeopteryx. Acta Palaeontologica Polonica 46: 519–532.
  • Foth C, Tischlinger H, Rauhut OWM. 2014. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511: 79–82. doi: 10.1038/nature13467
  • Friant M. 1959. Quelques caractères du squelette chez les oiseaux de la sous-classe des ratites. Acta Anatomica 39: 300–328. doi: 10.1159/000141562
  • Fürbringer M. 1888. Untersuchungen zur Morphologie und Systematik der Vögel, zugleich ein Beitrag zur Anatomie der Stützund Bewegungsorgane. II. Allgemeiner Theil. Amsterdam: TJ van Holkema.
  • Gadow H, Selenka E. 1891. Vögel. I. Anatomischer Theil. In: Dr H G Bronn’s Klassen und Ordnungen des Thier-Reichs, vol. 6, part 4. Leipzig: CF Winter’sche Verlagshandlung. pp 1–1008.
  • Gauthier JA. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences 8: 1–55.
  • George JC, Berger AJ. 1966. Avian myology. London: Academic Press.
  • Gilbert BM, Martin LD, Savage HG. 1981. Avian osteology. Laramie: Modern Printing Co.
  • Gishlick AD. 2001. The function of the manus and forelimb of Deinonychus antirrhopus and its importance for the origin of avian flight. In: Gauthier J, Gall LF (eds), New perspectives on the origin and early evolution of birds. New Haven: Yale Peabody Museum. pp 301–318.
  • Heller F. 1959. Ein dritter Archaeopteryx-Fund aus den Solnhofener Plattenkalken von Langenaltheim/Mfr. Erlanger geologische Abhandlungen 31: 1–25.
  • Hieronymus TL. 2016. Flight feather attachment in rock pigeons (Columba livia): covert feathers and smooth muscle coordinate a morphing wing. Journal of Anatomy 229: 631–656. doi: 10.1111/joa.12511
  • Hopkins BA, Constantinescu GM. 1995. Anatomy of ostriches, emus, and rheas. In: Drenowatz D (ed.), The ratite encyclopedia. San Antonio: Ratite Records. pp 31–61.
  • Hopp TP, Orsen MJ. 2004. Dinosaur brooding behavior and the origin of flight feathers. In: Currie PJ, Koppelhus EB, Shugar MA, Wright JL (eds), Feathered dragons. Bloomington: Indiana University Press. pp 234–250.
  • Howgate ME. 1983. Palaeontology: Archaeopteryx — no new finds after all. Nature 306: 644–645. doi: 10.1038/306644b0
  • Howgate ME. 1984. Archaeopteryx’s morphology. Nature 310: 104. doi: 10.1038/310104b0
  • Hultkrantz JW. 1897. Das Ellenbogengelenk und seine Mechanik. Jena: Gustav Fischer.
  • Hutson JD. 2015. Quadrupedal dinosaurs did not evolve fully pronated forearms: new evidence from the ulna. Acta Palaeontologica Polonica 60: 599–610.
  • Hutson JD, Hutson KN. 2012. A test of the validity of range of motion studies of fossil archosaur elbow mobility using repeated-measures analysis and the extant phylogenetic bracket. Journal of Experimental Biology 215: 2030–2038. doi: 10.1242/jeb.069567
  • Hutson JD, Hutson KN. 2013. Using the American alligator and a repeated-measures design to place constraints on in vivo shoulder joint range of motion in dinosaurs and other fossil archosaurs. Journal of Experimental Biology 216: 275–284. doi: 10.1242/jeb.074229
  • Hutson JD, Hutson KN. 2014. A repeated-measures analysis of the effects of soft tissues on wrist range of motion in the extant phylogenetic bracket of dinosaurs: implications for the functional origins of an automatic wrist folding mechanism in Crocodilia. The Anatomical Record 297: 1228–1249. doi: 10.1002/ar.22903
  • Hutson JD, Hutson KN. 2015a. Inferring the prevalence and function of finger hyperextension in Archosauria from finger-joint range of motion in the American alligator. Journal of Zoology, London 296: 189–199. doi: 10.1111/jzo.12232
  • Hutson JD, Hutson KN. 2015b. An examination of forearm bone mobility in Alligator mississippiensis (Daudin, 1802) and Struthio camelus Linnaeus, 1758 reveals that Archaeopteryx and dromaeosaurs shared an adaptation for gliding and/or flapping. Geodiversitas 37: 325–344. doi: 10.5252/g2015n3a3
  • Jeffries JA. 1881. On the fingers of birds. Bulletin of the Nuttall Ornithological Club 6: 6–11.
  • Larsson HCE, Wagner GP. 2002. Pentadactyl ground state of the avian wing. Journal of Experimental Zoology 294: 146–151. doi: 10.1002/jez.10153
  • Lee S-I, Kim J, Park H, Jabłoński PG, Choi H. 2014. The function of the alula in avian flight. Scientific Reports 5: 9914.
  • Lü J-C, Xu L, Liu Y-Q, Zhang X-L, Jia SH, Ji Q. 2010. A new troodontid theropod from the Late Cretaceous of central China, and the radiation of Asian troodontids. Acta Palaeontologica Polonica 55: 381–388. doi: 10.4202/app.2009.0047
  • Martin LD. 1983. The origin of birds and of avian flight. Current Ornithology 1: 105–129. doi: 10.1007/978-1-4615-6781-3_4
  • Martin LD, Lim JD. 2005. Soft body impression of the hand in Archaeopteryx. Current Science 89: 1089–1090.
  • Maxwell EE, Larsson HCE. 2007. Osteology and myology of the wing of the Emu (Dromaius novaehollandiae), and its bearing on the evolution of vestigial structures. Journal of Morphology 268: 423–441. doi: 10.1002/jmor.10527
  • Mayr G, Pohl B, Hartman S, Peters DS. 2007. The tenth skeletal specimen of Archaeopteryx. Zoological Journal of the Linnean Society 149: 97–116. doi: 10.1111/j.1096-3642.2006.00245.x
  • McGowan C. 1986. The wing musculature of the Weka (Gallirallus australis), a flightless rail endemic to New Zealand. Journal of Zoology, London 210: 305–346. doi: 10.1111/j.1469-7998.1986.tb03637.x
  • Meers MB. 1999. Evolution of the crocodylian forelimb: anatomy, biomechanics, and functional morphology. PhD thesis, John Hopkins University, USA.
  • Milner ARC, Harris JD, Lockley MG, Kirkland JI, Matthews NA. 2009. Bird-like anatomy, posture, and behavior revealed by an Early Jurassic theropod dinosaur resting trace. PLoS ONE 4: e4591.
  • Mitchell KJ, Llamas B, Soubrier J, Rawlence NJ, Worthy TH, Wood J, Lee MSY, Cooper A. 2014. Ancient DNA reveals elephant birds and Kiwi are sister taxa and clarifies ratite bird evolution. Science 344: 898–900. doi: 10.1126/science.1251981
  • Nachtigall W, Kempf B. 1971. Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vögeln. I. Der Daumenfittich als Hochauftriebserzeuger. Zeitschrift für vergleichende Physiologie 71: 326–341. doi: 10.1007/BF00298144
  • Nitzsch CL. 1811. Osteografische Beiträge zur Naturgeschichte der Vögel. Leipzig: CH Reclam.
  • O’Connor JK, Sullivan C. 2014. Reinterpretation of the Early Cretaceous maniraptoran (Dinosauria: Theropoda) Zhongornis haoae as a scansoriopterygid-like non-avian, and morphological resemblances between scansoriopterygids and basal oviraptorosaurs. Vertebrata PalAsiatica 52: 3–30.
  • Parker TJ. 1892. Additional observations on the development of Apteryx. Philosophical Transactions of the Royal Society of London Series B 183: 73–84.
  • Parker WK. 1888. On the structure and development of the wing in the common fowl. Philosophical Transactions of the Royal Society of London Series B 179: 385–398. doi: 10.1098/rstb.1888.0014
  • Paul GS. 1984. The archosaurs: a phylogenetic study. In: Reif W-E, Westphal F (eds), Third symposium on Mesozoic terrestrial ecosystems. Tübingen: ATTEMPTO-Verlag. pp 175–180.
  • Paul GS. 2002. Dinosaurs of the air. Baltimore: The Johns Hopkins University Press.
  • Prechtl JJ. 1846. Untersuchungen über den Flug der Vögel. Wien: Druck und Verlag von Carl Gerold.
  • Raikow RJ, Bicanovsky L, Bledsoe AH. 1988. Forelimb joint mobility and the evolution of wing–propelled diving in birds. The Auk 105: 446–451.
  • Reynolds SH. 1897. The vertebrate skeleton. Cambridge: Cambridge University Press.
  • Sanz JL, Chiappe LM, Pérez–Moreno P, Buscalioni AD, Moratalla JJ, Ortega F, Poyato–Ariza FJ. 1996. An Early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature 382: 442–445. doi: 10.1038/382442a0
  • Schaller NU, D’Août K, Villa R, Herkner B, Aerts P. 2011. Toe function and dynamic pressure distribution in Ostrich locomotion. Journal of Experimental Biology 214: 1123–1130. doi: 10.1242/jeb.043596
  • Schaller NU, Herkner B, Villa R, Aerts P. 2009. The intertarsal joint of the Ostrich (Struthio camelus): anatomical examination and function of passive structures in locomotion. Journal of Anatomy 214: 830–847. doi: 10.1111/j.1469-7580.2009.01083.x
  • Schöpss CG. 1829. Beschreibung der Flügelmuskeln der Vögel. Archiv für Anatomie und Physiologie 1829: 72–76.
  • Senter PJ. 2005. Function in the stunted forelimbs of Mononykus olecranus (Theropoda), a dinosaurian anteater. Paleobiology 31: 373–381. doi: 10.1666/0094-8373(2005)031[0373:FITSFO]2.0.CO;2
  • Senter PJ. 2006. Comparison of forelimb function between Deinonychus and Bambiraptor (Theropoda: Dromaeosauridae). Journal of Vertebrate Paleontology 26: 897–906. doi: 10.1671/0272-4634(2006)26[897:COFFBD]2.0.CO;2
  • Shufeldt RW. 1903. On the classification of certain groups of birds. (Supersuborders: Archornithiformes; Dromæognathæ; Odontoholcæ). American Naturalist 37: 33–64. doi: 10.1086/278242
  • Stephan B. 1994. Die Orientierung der Fingerkrallen der Vögel. Journal für Ornithologie 135: 1–16.
  • Stolpe M. 1932. Physiologisch–anatomische Untersuchungen über die hintere Extremität der Vögel. Journal für Ornithologie 80: 161–247. doi: 10.1007/BF01908701
  • Storer RW. 1961. Adaptive radiation in birds. In: Marshall AJ (ed.), Biology and comparative physiology of birds, vol. 2. New York: Academic Press. pp 15–55.
  • Sullivan C, Hone DWE, Xu X, Zhang F. 2010. The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs. Proceedings of the Royal Society B 277: 2027–2033.
  • Sy M. 1936. Funktionell-anatomische Untersuchungen am Vogelflügel. Journal für Ornithologie 84: 199–296. doi: 10.1007/BF01906709
  • Thulborn RA, Hamley TL. 1982. The reptilian relationships of Archaeopteryx. Australian Journal of Zoology 30: 611–634. doi: 10.1071/ZO9820611
  • Vazquez RJ. 1995. Functional anatomy of the pigeon hand (Columba livia): a muscle stimulation study. Journal of Morphology 226: 33–45. doi: 10.1002/jmor.1052260104
  • Vialleton L-M. 1916. Développement et fonctions des griffes de l’aile chez les oiseaux, leur rôle probable chez l’Archaeopteryx. Annales du Musée d’histoire Naturelle de Marseille 15(6): 1–26.
  • Vialleton L-M. 1924. Première partie. In: Doin G (ed.), Morphologie générale. Paris: Librairie Octave Doin. pp 1–480.
  • Vicq-d’Azyr F. 1777. Sur les os et les muscles des oiseaux. Histoire de l’Académie Royale des Sciences 1773: 321–333.
  • von Ende CN. 2001. Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds), Design and analysis of ecological experiments (2nd edn). New York: Oxford University Press. pp 134–157.
  • Wang M, Wang X, Wang Y, Zhou Z. 2016. A new basal bird from China with implications for morphological diversity in early birds. Scientific Reports 6: 19700.
  • Wang X, Pittman M, Zheng X, Kaye TG, Falk AR, Hartman SA, Xu X. 2017. Basal paravian functional anatomy illuminated by high-detail body outline. Nature Communications 8: 14576. doi: 10.1038/ncomms14576
  • Wellnhofer P. 1992. A new specimen of Archaeopteryx from the Solnhofen limestone. Science Series, Natural History Museum of Los Angeles County 36: 3–23.
  • Wellnhofer P, Röper M. 2005. Das neunte Archaeopteryx– Exemplar von Solnhofen. Archaeopteryx 23: 3–21.
  • Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed.), Functional morphology in vertebrate paleontology. New York: Cambridge University Press. pp 19–33.
  • Wray RS. 1887. On some points in the morphology of the wings of birds. Proceedings of the Zoological Society of London 55: 343–357.
  • Xu X, Wang X-L, Wu X-C. 1999. A dromaeosaurid dinosaur with filamentous integument from the Yixian Formation of China. Nature 401: 262–266. doi: 10.1038/45769
  • Xu X, You H, Du K, Han F. 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 474: 465–470. doi: 10.1038/nature10288
  • Xu X, Zheng X, Sullivan C, Wang X, Xing L, Wang Y, Zhang X, O’Connor JK, Zhang F, Pan Y. 2015. A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521: 70–73. doi: 10.1038/nature14423
  • Zanno LE. 2010. A taxonomic and phylogenetic re-evaluation of Therizinosauria (Dinosauria: Maniraptora). Journal of Systematic Palaeontology 8: 503–543. doi: 10.1080/14772019.2010.488045
  • Zar JH. 1999. Biostatistical analysis (4th edn). Upper Saddle River: Prentice Hall.
  • Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y, Eberth DA, Hadfield F. 2012. Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338: 510–514. doi: 10.1126/science.1225376
  • Zhou Z, Martin LD. 1999. Feathered dinosaur or bird? A new look at the hand of Archaeopteryx. Smithsonian Contributions to Biology 89: 289–293.
  • Zhou Z-H, Wang X-L, Zhang F-C, Xing X. 2000. Important features of Caudipteryx – evidence from two nearly complete new specimens. Vertebrata PalAsiatica 10: 241–254.
  • Zhou Z, Zhang F. 2003. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Canadian Journal of Earth Sciences 40: 731–747. doi: 10.1139/e03-011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.