165
Views
2
CrossRef citations to date
0
Altmetric
Articles

Warming promotes growth of seedlings of a woody encroacher in grassland dominated by C4 species

, ORCID Icon & ORCID Icon
Pages 272-280 | Received 27 Nov 2020, Accepted 04 Apr 2021, Published online: 09 May 2021

References

  • Acharya BS, Kharel G, Zou CB, Wilcox BP, Halihan T. 2018; Woody plant encroachment impacts on groundwater recharge: A review. Water (Basel) 10: 1466. https://doi.org/10.3390/w10101466.
  • An J, Han S, Chang H, Park MJ, Kim S, Hwang J, Cho MS, Chung H, Son Y. 2017. Physiological and growth responses to experimental warming in first-year seedlings of deciduous tree species. Turkish Journal of Agriculture and Forestry 41: 175–182. https://doi.org/10.3906/tar-1611-106.
  • Armani M, Goodale UM, Charles-Dominique T, Barton KE, Yao X, Tomlinson KW. 2020. Structural defence is coupled with the leaf economic spectrum across saplings of spiny species. Oikos 129: 740–752. https://doi.org/10.1111/oik.06960.
  • Belayneh A, Tessema ZK. 2017. Mechanisms of bush encroachment and its inter-connection with rangeland degradation in semi-arid African ecosystems: a review. Journal of Arid Land 9: 299–312. https://doi.org/10.1007/s40333-016-0023-x.
  • Bond WJ, Midgley GF. 2012. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367: 601–612. https://doi.org/10.1098/rstb.2011.0182.
  • Bowman DMJS, Brienen RJW, Gloor E, Phillips OL, Prior LD. 2013. Detecting trends in tree growth: not so simple. Trends in Plant Science 18: 11–17. https://doi.org/10.1016/j.tplants.2012.08.005.
  • Buhrmann RD, Ramdhani S, Pammenter NW, Naidoo S. 2016. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland. Bothalia 46: a2122. https://doi.org/10.4102/abc.v46i2.2122.
  • Butterly CR, Armstrong R, Chen D, Tang C. 2016. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Annals of Botany 117: 177–185. https://doi.org/10.1093/aob/mcv140.
  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y. 2013. Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research 126: 447–460. https://doi.org/10.1007/s10265-013-0565-3.
  • Devine AP, McDonald RA, Quaife T, Maclean IM. 2017. Determinants of woody encroachment and cover in African savannas. Oecologia 183: 939–951. https://doi.org/10.1007/s00442-017-3807-6.
  • D’Odorico P, Okin GS, Bestelmeyer BT. 2012. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5: 520–530. https://doi.org/10.1002/eco.259.
  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Bond WJ, Christin PA, Cousins AB, Duvall MR, Fox DL, Freckleton RP, et al. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328: 587–591. https://doi.org/10.1126/science.1177216.
  • February EC, Coetsee C, Cook GD, Ratnam J, Wigley B. 2020. Physiological traits of savanna woody species: Adaptations to resource availability. In: Scogings PF, Sankaran M (Eds), Savanna woody plants and large herbivores. Hoboken: John Wiley & Sons Ltd. pp 311–329.
  • Fey M. 2010. Soils of South Africa. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511782183.
  • Fynn RWS, O’Connor TG. 2005. Determinants of community organization of a South African mesic grassland. Journal of Vegetation Science 16: 93–102. https://doi.org/10.1111/j.1654-1103.2005.tb02342.x.
  • Grellier S, Janeau J, Richard P, Florsch N, Ward D, Bariac T, Lorentz S. 2020. Water uptake plasticity of savanna trees in encroached grassland: small trees match the mature trees. African Journal of Range & Forage Science. https://doi.org/10.2989/10220119.2020.1834453.
  • Gleason SM, Stephens AEA, Tozer WC, Blackman CJ, Butler DW, Chang Y, Cooke AM, Cooke J, Laws CA, Rosell JA, et al. 2018. Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits. Functional Ecology 32: 247–259. https://doi.org/10.1111/1365-2435.12972.
  • Gunton RM, Boyes LJ, Griffiths ME, Lawes MJ. 2010. Regeneration niches and functional traits of three common species in subtropical dune forest. Forest Ecology and Management 260: 1490–1497. https://doi.org/10.1016/j.foreco.2010.07.047.
  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. 2007. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics 8: 157–178. https://doi.org/10.1016/j.ppees.2007.01.001.
  • Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. The Quarterly Review of Biology 67: 283–335. https://doi.org/10.1086/417659.
  • Hoffmann WA, Poorter H. 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany 90: 37–42.
  • Ibáñez I, Katz DSW, Lee BR. 2017. The contrasting effects of short-term climate change on the early recruitment of tree species. Oecologia 184: 701–713.
  • IPCC. 2014. IPCC Climate Change. 2014. Impacts, adaptation and vulnerability. Cambridge: Cambridge University Press.
  • John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L. 2017. The anatomical and compositional basis of leaf mass per area. Ecology Letters 20: 412–425. https://doi.org/10.1111/ele.12739.
  • Jolly WM, Running SW. 2004. Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Global Change Biology 10: 303–308. https://doi.org/10.1046/j.1365-2486.2003.00701.x.
  • Joshi AA, Ratnam J, Sankaran M. 2020. Frost maintains forests and grasslands as alternate states in a montane tropical forest– grassland mosaic; but alien tree invasion and warming can disrupt this balance. Journal of Ecology 108: 122–132. https://doi.org/10.1111/1365-2745.13239.
  • Ketter BL, Holdo RM. 2018. Strong competitive effects of African savanna C4 grasses on tree seedlings do not support rooting differentiation. Journal of Tropical Ecology 34: 65–73. https://doi.org/10.1017/S0266467418000020.
  • Krab EJ, Roennefarth J, Becher M, Blume-Werry G, Keuper F, Klaminder J, Kreyling J, Makoto K, Milbau A, Dorrepaal E. 2018. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. Journal of Ecology 106: 599–612.
  • Kreyling J, Grant K, Hammerl V, Arfin-Khan MAS, Malyshev AV, Peñuelas J, Pritsch K, Sardans J, Schloter M, Schuerings J, Jentsch A, Beierkuhnlein C. 2019. Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. Scientific Reports 9: 14632. https://doi.org/10.1038/s41598-019-51221-w.
  • Lazarus BE, Castanha C, Germino MJ, Kueppers LM, Moyes AB. 2018. Growth strategies and threshold responses to water deficit modulate effects of warming on tree seedlings from forest to alpine. Journal of Ecology 106: 571–585. https://doi.org/10.1111/1365-2745.12837.
  • Lett S, Dorrepaal E. 2018. Global drivers of tree seedling establishment at alpine treelines in a changing climate. Functional Ecology 32: 1666–1680. https://doi.org/10.1111/1365-2435.13137.
  • Lie Z, Lin W, Huang W, Fang X, Huang C, Wu T, Chu G, Liu S, Meng Z, Zhou G, Liu J. 2019. Warming changes soil N and P supplies in model tropical forests. Biology and Fertility of Soils 55: 751–763. https://doi.org/10.1007/s00374-019-01382-7.
  • Luvuno L, Biggs R, Stevens N, Esler K. 2018. Woody encroachment as a social-ecological regime shift. Sustainability 10: 2221. https://doi.org/10.3390/su10072221.
  • Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN, et al. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology 3: 20–32.
  • Mathew I, Shimelis H, Mutema M, Clulow A, Zengeni R, Mbava N, Chaplot V. 2019. Selection of wheat genotypes for biomass allocation to improve drought tolerance and carbon sequestration into soils. Journal Agronomy & Crop Science 205: 385–400. https://doi.org/10.1111/jac.12332.
  • Matyssek R, Kozovits AR, Wieser G, King J, Rennenberg H. 2017. Woody-plant ecosystems under climate change and air pollution – response consistencies across zonobiomes? Tree Physiology 37: 706–732. https://doi.org/10.1093/treephys/tpx009.
  • Moleele NM, Perkins JS. 1998. Encroaching woody plant species and boreholes: is cattle density the main driving factor in the Olifants Drift communal grazing lands, south-eastern Botswana? Journal of Arid Environments 40: 245–253. https://doi.org/10.1006/jare.1998.0451.
  • Mucina L, Rutherford MC (Eds). 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.
  • O’Connor TG, Puttick JR, Hoffman MT. 2014. Bush encroachment in southern Africa: changes and causes. African Journal of Range & Forage Science 31: 67–88. https://doi.org/10.2989/10220119.2014.939996.
  • Pallardy SG. 2008. Physiology of woody plants. Burlington: Academic Press.
  • Parmesan C, Hanley ME. 2015. Plants and climate change: complexities and surprises. Annals of Botany 116: 849–864. https://doi.org/10.1093/aob/mcv169.
  • Quirk J, Bellasio C, Johnson DA, Osborne CP, Beerling DJ. 2019. C4 savanna grasses fail to maintain assimilation in drying soil under low CO2 compared with C3 trees despite lower leaf water demand. Functional Ecology 33: 388–398. https://doi.org/10.1111/1365-2435.13240.
  • Russell J, Ward D. 2014. Vegetation change in northern KwaZulu-Natal since the Anglo-Zulu War of 1879: local or global drivers? African Journal of Range & Forage Science 31: 89–105. https://doi.org/10.2989/10220119.2013.827740.
  • Scogings PF, Sankaran M. 2020. Woody plants and large herbivores in savannas: ancient past–uncertain future. In: Scogings PF, Sankaran M (Eds), Savanna woody plants and large herbivores. Hoboken, USA: John Wiley & Sons Ltd. pp 683–712.
  • Sinclair MN, Woods NN, Zinnert JC. 2020. Seasonal facilitative and competitive trade-offs between shrub seedlings and coastal grasses. Ecosphere 11: e02995. https://doi.org/10.1002/ecs2.2995.
  • Slot M, Winter K. 2018. High tolerance of tropical sapling growth and gas exchange to moderate warming. Functional Ecology 32: 599–611. https://doi.org/10.1111/1365-2435.13001.
  • Stevens N, Seal CE, Archibald A, Bond W. 2014. Increasing temperatures can improve seedling establishment in arid-adapted savanna trees. Oecologia 175: 1029–1040. https://doi.org/10.1007/s00442-014-2958-y.
  • Stevens N, Erasmus BFN, Archibald S, Bond WJ. 2016. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371: 20150437. https://doi.org/10.1098/rstb.2015.0437.
  • Stevens N, Lehmann CER, Murphy BP, Durigan G. 2017. Savanna woody encroachment is widespread across three continents. Global Change Biology 23: 235–244. https://doi.org/10.1111/gcb.13409.
  • Sweet RJ, Mphinyane W. 1986. Preliminary observations on the ability of goats to control post-burning regrowth in Acacia nigrescens/Combretum apiculatum savanna in Botswana. Journal of the Grassland Society of Southern Africa 3: 79–84. https://doi.org/10.1080/02566702.1986.9648040.
  • Swemmer A, Ward D. 2020. Patterns and determinants of woody plant growth in savannas. In: Scogings PF, Sankaran M (Eds), Savanna woody plants and large herbivores. Hoboken: John Wiley & Sons Ltd. pp 331–438.
  • Tedder M, Morris C, Fynn R, Kirkman K. 2012. Do soil nutrients mediate competition between grasses and Acacia saplings? Grassland Science 58: 238–245. https://doi.org/10.1111/grs.12003.
  • Tedder M, Kirkman K, Morris C, Fynn R. 2014 Tree–grass competition along a catenal gradient in a mesic grassland, South Africa. Grassland Science 60: 1–8. https://doi.org/10.1111/grs.12034.
  • Tobita H, Yazaki K, Harayama H, Kitao M. 2016. Responses of symbiotic N2 fixation in Alnus species to the projected elevated CO2 environment. Trees (Berlin) 30: 523–537. https://doi.org/10.1007/s00468-015-1297-x.
  • Tomlinson KW, Sterck FJ, Barbosa ER, de Bie S, Prins HH, van Langevelde F. 2019. Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. Journal of Ecology 107: 1051–1066. https://doi.org/10.1111/1365-2745.13085.
  • Venter ZS, Cramer MD, Hawkins H. 2018. Drivers of woody plant encroachment over Africa. Nature Communications 9: 2272. https://doi.org/10.1038/s41467-018-04616-8.
  • Vetter S, Goodall VL, Alcock R. 2020. Effect of drought on communal livestock farmers in KwaZulu-Natal, South Africa. African Journal of Range & Forage Science 37: 93–106. https://doi.org/10.2989/10220119.2020.1738552.
  • Volder A, Briske DD, Tjoelker MG. 2013. Climate warming and precipitation redistribution modify tree–grass interactions and tree species establishment in a warm-temperate savanna. Global Change Biology 19: 843–857. https://doi.org/10.1111/gcb.12068.
  • Wagner TC, Richter J, Joubert DF, Fischer C. 2018. A dominance shift in arid savanna: an herbaceous legume outcompetes local C4 grasses. Ecology and Evolution 8: 6779–6787. https://doi.org/10.1002/ece3.4188.
  • Wakeling JL, Cramer MD, Bond WJ. 2012. The savanna- grassland ‘treeline’: why don’t savanna trees occur in upland grasslands? Journal of Ecology 100: 381–391. https://doi.org/10.1111/j.1365-2745.2011.01921.x.
  • Ward D, Wiegand K, Getzin S. 2013. Walter’s two-layer hypothesis revisited: back to the roots! Oecologia 172: 617–630. https://doi.org/10.1007/s00442-012-2538-y.
  • Ward D, Hoffman MT, Collocott SJ. 2014. A century of woody plant encroachment in the dry Kimberley savanna of South Africa. African Journal of Range & Forage Science 31: 107–121. https://doi.org/10.2989/10220119.2014.914974.
  • Wigley BJ, Slingsby JA, Díaz S, Bond WJ, Fritz H, Coetsee C. 2016. Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology 104: 1357–1369. https://doi.org/10.1111/1365-2745.12598.
  • Wilcox BP, Birt A, Fuhlendorf SD, Archer SR. 2018. Emerging frameworks for understanding and mitigating woody plant encroachment in grassy biomes. Current Opinion in Environmental Sustainability 32: 46–52. https://doi.org/10.1016/j.cosust.2018.04.005.
  • Yang L, Yang Z, Peng Y, Lin Y, Xiong D, Li Y, Yang Y. 2019. Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: a bioassay mesocosm experiment. Plant and Soil 444: 87–99. https://doi.org/10.1007/s11104-019-04246-z.
  • Yuan Y, Ge L, Yang H, Ren W. 2018. A meta-analysis of experimental warming effects on woody plant growth and photosynthesis in forests. Journal of Forestry Research 29: 727–733. https://doi.org/10.1007/s11676-017-0499-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.