263
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Intercropping forage cactus with sorghum affects the morphophysiology and phenology of forage cactus

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 129-140 | Received 22 Mar 2021, Accepted 27 Jun 2021, Published online: 06 Aug 2021

References

  • Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations. Rome.
  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift (Berlin) 22: 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
  • Amorim DM, Silva TGF, Pereira PC, Souza LSB, Minuzzi RB. 2017. Phenophases and cutting time of forage cactus under irrigation and cropping systems. Pesquisa Agropecuária Tropropical 47: 62–71. https://doi.org/10.1590/1983-40632016v4742746.
  • Araújo Júnior GN, Silva TGF, Souza LSB, Araújo GGL, Moura MSB, Alves CP, Salvador KRS, Souza CAA, Montenegro AAA, Silva MJ. 2021. Phenophases, morphophysiological indices and cutting time in clones of the forage cacti under controlled water regimes in a semiarid environment. Journal of Arid Environments 190: 104510. https://doi.org/10.1016/j.jaridenv.2021.104510.
  • Arnold CY. 1959. The determination and significance of the base temperature in a linear heat unit system. Journal of the American Society for Horticultural Science 74: 430–445.
  • Bajželj B, Quested TE, Röös E, Swannell RP. 2020. The role of reducing food waste for resilient food systems. Ecosystem Services 45: 101140. https://doi.org/10.1016/j.ecoser.2020.101140.
  • Bowers JE. 1996. More Flowers or New Cladodes? Environmental correlates and biological consequences of sexual reproduction in a Sonoran Desert prickly pear cactus, Opuntia engelmannii. Bulletin of the Torrey Botanical Club 123: 34–40. https://doi.org/10.2307/2996304.
  • Carvalho CBM, Edvan RL, Nascimento KS, Nascimento RR, Bezerra LR, Jácome DLS, Santos VLF, Santana Júnior HA. 2020. Methods of storing cactus pear genotypes for animal feeding. African Journal of Range & Forage Science 37: 173–179. https://doi.org/10.2989/10220119.2020.1734084.
  • Chimonyo VGP, Modi AT, Mabhaudhi T. 2018. Sorghum radiation use efficiency and biomass partitioning in intercropped systems. South African Journal of Botany 118: 76–84. https://doi.org/10.1016/j.sajb.2018.06.009.
  • Conesa MÀ, Muir CD, Roldán EJ, Molins A, Perdomo JA, Galmés J. 2017. Growth capacity in wild tomatoes and relatives correlates with original climate in arid and semi-arid species. Environmental and Experimental Botany 141: 181–190. https://doi.org/10.1016/j.envexpbot.2017.04.009.
  • Cruz PE, Pavón NP. 2013. Reproductive phenology of Isolatocereus dumortieri (Cactaceae) in semiarid scrub in central Mexico: Effect of rain during the dry season. Journal of Arid Environments 92: 53–58. https://doi.org/10.1016/j.jaridenv.2012.12.004.
  • Diniz WJS, Silva TGF, Ferreira JMS, Santos DC, Moura MSB, Araújo GGL, Zolnier S. 2017. Forage cactus-sorghum intercropping at different irrigation water depths in the Brazilian Semiarid Region. Pesquisa Agropecuária Brasileira 52: 724–733. https://doi.org/10.1590/s0100-204x2017000900004.
  • Díaz FJ, Grattan SR, Reyes JA, La Roza-Delgado B, Benes SE, Jiménez C, Dorta M, Tejedor M. 2018. Using saline soil and marginal quality water to produce alfalfa in arid climates. Agricultural Water Management 199: 11–21. https://doi.org/10.1016/j.agwat.2017.12.003.
  • Edvan RL, Mota RRM, Dias-Silva TP, do Nascimento RR, de Sousa SV, da Silva AL, Araújo MJ, Araújo JS. 2020. Resilience of cactus pear genotypes in a tropical semi-arid region subject to climatic cultivation restriction. Scientific Reports 10: 10040. https://doi.org/10.1038/s41598-020-66972-0.
  • Food and Agriculture Organization (FAO). 2006. Chapter 4: Soil description. In: Guidelines for soil description (4th edn), FAO, Rome, pp 21–65, ISBN 92–5–105521–1. Rome, Italy: FAO.
  • Franco JG, King SR, Volder A. 2018. Component crop physiology and water use efficiency in response to intercropping. European Journal of Agronomy 93: 27–39. https://doi.org/10.1016/j.eja.2017.11.005.
  • Gomes VGN, Valiente-Banuet A, Araujo AC. 2019. Reproductive phenology of cacti species in the Brazilian Chaco. Journal of Arid Environments 161: 85–93. https://doi.org/10.1016/j.jaridenv.2018.11.001.
  • Hassan S, Inglese P, Gristina L, Liguori G, Novara A, Louhaichi M, Sortino G. 2019. Root growth and soil carbon turnover in Opuntia ficus-indica as affected by soil volume availability. European Journal of Agronomy 105: 104–110. https://doi.org/10.1016/j.eja.2019.02.012.
  • Herce MF, Martorell C, Alonso-Fernandez C, Boullosa LFVV, Meave JA. 2014. Stem tilting in the inter-tropical cactus Echinocactus platyacanthus: an adaptive solution to the trade-off between radiation acquisition and temperature control. Plant Biology 16: 571–577. https://doi.org/10.1111/plb.12085.
  • Huber J, Dettman DL, Williams DG, Hultine KR. 2018. Gas exchange characteristics of giant cacti species varying in stem morphology and life history strategy. American Journal of Botany 105: 1688–1702. https://doi.org/10.1002/ajb2.1166.
  • Jardim AMRF, Silva TGF, Souza LSB, Souza MS, Morais JEF, Araújo Júnior GN. 2020a. Multivariate analysis in the morpho-yield evaluation of forage cactus intercropped with sorghum. Revista Brasileira de Engenharia Agrícola e Ambiental 24: 756–761. https://doi.org/10.1590/1807-1929/agriambi.v24n11p756-761.
  • Jardim AMRF, Silva TGF, Souza LSB, Souza MS. 2020b. Interaction of agroecosystem intercropped with forage cactus- sorghum in the semi-arid environment: a review. Journal of Environmental Analysis and Progress 5: 69–87. https://doi.org/10.24221/jeap.5.1.2020.2743.069-087.
  • Jardim AMRF, Silva TGF, Souza LSB, Araújo Júnior GN, Alves HKMN, Souza MS, Araujo GGL, Moura MSB. 2021a. Intercropping forage cactus and sorghum in a semi-arid environment improves biological efficiency and competitive ability through interspecific complementarity. Journal of Arid Environments 188: 104464. https://doi.org/10.1016/j.jaridenv.2021.104464.
  • Jardim AMRF, Santos HRB, Alves HKMN, Ferreira-Silva SL, Souza LSB, Araújo Júnior GN, Souza MS, Araujo GGL, Souza CAA, Silva TGF. 2021b. Genotypic differences relative photochemical activity, inorganic and organic solutes and yield performance in clones of the forage cactus under semi-arid environment. Plant Physiology and Biochemistry 162: 421–430. https://doi.org/10.1016/j.plaphy.2021.03.011.
  • Lima LR, Silva TGF, Jardim AMRF, Souza CAA, Queiroz MG, Tabosa JN. 2018a. Growth, water use and efficiency of forage cactus sorghum intercropping under different water depths. Revista Brasileira de Engenharia Agrícola e Ambiental 22: 113–118. https://doi.org/10.1590/1807-1929/agriambi.v22n2p113-118.
  • Lima LR, Silva TGF, Pereira PC, Morais JEF, Assis MCS. 2018b. Productive-economic benefit of forage cactus-sorghum intercropping systems irrigated with saline water. Revista Caatinga 31: 191–201. https://doi.org/10.1590/1983-21252018v31n122rc.
  • López-García R, Mata-González R, Blanco-Macías F, Méndez- Gallegos SJ, Valdez-Cepeda RD. 2016. Fruit attributes dependence on fruiting cladode dry or fresh matter in Opuntia ficus-indica (L.) Miller variety ‘Rojo Pelón.’ Scientia Horticulturae 202: 57–62. https://doi.org/10.1016/j.scienta.2016.02.028.
  • Macêdo AJS, Santos EM, Araújo GGL, Edvan RL, Oliveira JS, Perazzo AF, Sá WCCS, Pereira DM. 2018. Silages in the form of diet based on spineless cactus and buffelgrass. African Journal of Range & Forage Science 35: 121–129. https://doi.org/10.2989/10220119.2018.1473494.
  • Masters DG, Benes SE, Norman HC. 2007. Biosaline agriculture for forage and livestock production. Agriculture, Ecosystems & Environment 119: 234–248. https://doi.org/10.1016/j.agee.2006.08.003.
  • McMaster GS, Edmunds DA, Wilhelm WW, Nielsen DC, Prasad PVV, Ascough JC. 2011. PhenologyMMS: A program to simulate crop phenological responses to water stress. Computers and Electronics in Agriculture 77: 118–125. https://doi.org/10.1016/j.compag.2011.04.003.
  • McMaster GS, Wilhelm WW. 1997. Growing degree- days: one equation, two interpretations. Agricultural and Forest Meteorology 87: 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0.
  • Mendiburu F. 2015. agricolae: statistical procedures for agricultural research. R package version 1.3-3. https://CRAN.R-project.org/package=agricolae.
  • Motsa MM, Slabbert MM, Bester C, Ngwenya MZ. 2017. Phenology of honeybush (Cyclopia genistoides and C. subternata) genotypes. South African Journal of Botany 110: 57–67. https://doi.org/10.1016/j.sajb.2016.03.005.
  • Müller LLB, Albach DC, Zotz G. 2018. Growth responses to elevated temperatures and the importance of ontogenetic niche shifts in Bromeliaceae. New Phytologist 217: 127–139. https://doi.org/10.1111/nph.14732.
  • Nobel PS, Zutta BR. 2008. Temperature tolerances for stems and roots of two cultivated cacti, Nopalea cochenillifera and Opuntia robusta: Acclimation, light, and drought. Journal of Arid Environments 72: 633–642. https://doi.org/10.1016/j.jaridenv.2007.08.005.
  • Ojeda-Pérez ZZ, Jiménez-Bremont JF, Delgado-Sánchez P. 2017. Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha. PLoS ONE 12: e0186540. https://doi.org/10.1371/journal.pone.0186540.
  • Ojeda JJ, Pembleton KG, Caviglia OP, Islam MR, Agnusdei MG, Garcia SC. 2018. Modelling forage yield and water productivity of continuous crop sequences in the Argentinian Pampas. European Journal of Agronomy 92: 84–96. https://doi.org/10.1016/j.eja.2017.10.004.
  • Perazzo AF, Carvalho GGP, Santos EM, Bezerra HFC, Silva TC, Pereira GA, Ramos RCS, Rodrigues JAS. 2017. Agronomic Evaluation of Sorghum Hybrids for Silage Production Cultivated in Semiarid Conditions. Frontiers in Plant Science 8: 1088. https://doi.org/10.3389/fpls.2017.01088.
  • Pereira PC, Silva TGF, Zolnier S, Morais JEF, Santos DC. 2015. Morfogênese da palma forrageira irrigada por gotejamento. Revista Caatinga 28: 184–195. https://doi.org/10.1590/1983-21252015v28n321rc.
  • Pinheiro KM, Silva TGF, Carvalho HFS, Santos JEO, Morais JEF, Zolnier S, Santos DC. 2014. Correlações do índice de área do cladódio com características morfogênicas e produtivas da palma forrageira. Pesquisa Agropecuária Brasileira 49: 939–947. https://doi.org/10.1590/S0100-204X2014001200004.
  • Queiroz MG, Silva TGF, Zolnier S, Silva SMS, Lima LR, Alves JO. 2015. Características morfofisiológicas e produtividade da palma forrageira em diferentes lâminas de irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental 19: 931–938. https://doi.org/10.1590/1807-1929/agriambi.v19n10p931-938.
  • Queiroz MG, Silva TGF, Zolnier S, Silva SMS, Souza CAA, Carvalho HFS. 2016. Relações hídrico-econômicas da palma forrageira cultivada em ambiente Semiárido. Irriga 1: 141–154. https://doi.org/10.15809/irriga.2016v1n01p141-154.
  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
  • Ramírez-Valiente JA, Center A, Sparks JP, Sparks KL, Etterson JR, Longwell T, Pilz G, Cavender-Bares J. 2017. Population- level differentiation in growth rates and leaf traits in seedlings of the Neotropical live Oak Quercus oleoides grown under natural and manipulated precipitation regimes. Frontiers in Plant Science 8: 1–14. https://doi.org/10.3389/fpls.2017.00585.
  • Richards LA. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. US Department of Agriculture, Washington, DC.
  • Röös E, Bajzelj B, Weil C, Andersson E, Bossio D, Gordon LJ. 2021. Moving beyond organic – A food system approach to assessing sustainable and resilient farming. Global Food Security 28: 100487. https://doi.org/10.1016/j.gfs.2020.100487.
  • Silva TGF, Araújo Primo JT, Moura MSB, Silva SMS, Morais JEF, Pereira PC, Souza CAA. 2015a. Soil water dynamics and evapotranspiration of forage cactus clones under rainfed conditions. Pesquisa Agropecuária Brasileira 50: 515–525. https://doi.org/10.1590/S0100-204X2015000700001.
  • Silva TGF, Araújo Primo JT, Morais JEF, Diniz WJS, Souza CAA, Silva MC. 2015b. Crescimento e produtividade de clones de palma forrageira no semiárido e relações com variáveis meteorológicas. Revista Caatinga 28: 10–18. doi: 10.1590/1983-21252015v28n402rc
  • Silva TGF, Miranda KR, Santos DC, Queiroz MG, Silva MC, Cruz Neto JF, Araújo JEM. 2014. Área do cladódio de clones de palma forrageira: modelagem, análise e aplicabilidade. Agrária 9: 633–641. https://doi.org/10.5039/agraria.v9i4a4553.
  • Silva VJ, Faria AFG, Pequeno DNL, Silva LS, Sollenberger LE, Pedreira CGS. 2019. Growth analysis of Brachiariagrasses and ‘Tifton 85’ Bermudagrass as affected by harvest interval. Crop Science 59: 1808–1814. https://doi.org/10.2135/cropsci2019.01.0030.
  • Silva MV, Pandorfi H, Almeida GLP, Lima RP, Santos A, Jardim AMRF, Rolim MM, Silva JLB, Batista PHD, Silva RAB, et al. 2021. Spatio-temporal monitoring of soil and plant indicators under forage cactus cultivation by geoprocessing in Brazilian semi-arid region. Journal of South American Earth Sciences 107: 103155. https://doi.org/10.1016/j.jsames.2021.103155.
  • Souza MS, Silva TGF, Souza LSB, Alves HKMN, Leite RMC, Souza CAA, Araújo GGLD, Campos FS, Silva MJ, de Souza PJOP. 2020. Growth, phenology and harvesting time of cactus- millet intercropping system under biotic mulching. Archives of Agronomy and Soil Science 67: 1–15. https://doi.org/10.1080/03650340.2020.1852553.
  • Swart WJ. 2009. Strategies for the management of cactus pear diseases: a global perspective. Acta Horticulturae 811: 207–216. https://doi.org/10.17660/ActaHortic.2009.811.25.
  • Vanderlip RL, Reeves HE. 1972. Growth Stages of Sorghum [Sorghum bicolor, (L.) Moench.]. Agronomy Journal 64: 13. https://doi.org/10.2134/agronj1972.00021962006400010005x.
  • Vasseur F, Bresson J, Wang G, Schwab R, Weigel D. 2018. Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods 14: 63. https://doi.org/10.1186/s13007-018-0331-6.
  • Winter K, Garcia M, Holtum JAM. 2008. On the nature of facultative and constitutive CAM: Environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. Journal of Experimental Botany 59: 1829–1840. https://doi.org/10.1093/jxb/ern080.
  • Wu W, Yu Q, You L, Chen K, Tang H, Liu J. 2018. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 76: 515–525. https://doi.org/10.1016/j.landusepol.2018.02.032.
  • Xiang M, Yu Q, Wu W. 2019. From multiple cropping index to multiple cropping frequency: Observing cropland use intensity at a finer scale. Ecological Indicators 101: 892–903. https://doi.org/10.1016/j.ecolind.2019.01.081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.