24
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Exploring new solutions to Tingley’s problem for function algebras

, , &
Pages 1315-1346 | Received 25 Oct 2021, Published online: 02 Jun 2022

References

  • T. Banakh, Any isometry between the spheres of absolutely smooth 2-dimensional Banach spaces is linear, J. Math. Anal. Appl. 500(1) (2021), Paper No. 125104. doi: 10.1016/j.jmaa.2021.125104
  • T. Banakh, Every 2-dimensional Banach space has the Mazur-Ulam property, Linear Algebra Appl. 632 (2022), 268–280. doi: 10.1016/j.laa.2021.09.020
  • T. Banakh and J. Cabello Sánchez, Every non-smooth 2-dimensional Banach space has the Mazur-Ulam property, Linear Algebra Appl. 625 (2021), 1–19. doi: 10.1016/j.laa.2021.04.020
  • J. Becerra Guerrero, M. Cueto-Avellaneda, F.J. Fernández-Polo, and A.M. Peralta, On the extension of isometries between the unit spheres of a JBW*- triple and a Banach space, J. Inst. Math. Jussieu 20(1) (2021), 277–303. doi: 10.1017/S1474748019000173
  • M.J. Burgos, A.M. Peralta, M.I. Ramírez, and M.E. Ruiz Morillas, Von Neumann regularity in Jordan-Banach triples, Proceedings of Jordan Structures in Algebra and Analysis Meeting, pp. 65–88, Editorial Círculo Rojo, Almería, 2010.
  • J. Cabello-Sánchez, A reflection on Tingley’s problem and some applications, J. Math. Anal. Appl. 476(2) (2019), 319–336. doi: 10.1016/j.jmaa.2019.03.041
  • M. Cabrera García and A. Rodríguez Palacios, Non-associative normed algebras, Vol. 1, Encyclopedia of Mathematics and its Applications, Vol. 154, Cambridge University Press, Cambridge, 2014. The Vidav-Palmer and Gelfand-Naimark theorems.
  • M. Cabrera García and A. Rodríguez Palacios, Non-associative normed algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, Vol. 167, Cambridge University Press, Cambridge, 2018. Representation theory and the Zel’manov approach.
  • A. Campos-Jiménez and F.J. García-Pacheco, Geometric Invariants of Surjective Isometries between Unit Spheres, Mathematics 2021; 9(18):2346. https://doi.org/10.3390/math9182346
  • L. Cheng and Y. Dong, On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl. 377 (2011), 464– 470. doi: 10.1016/j.jmaa.2010.11.025
  • G.G. Ding, The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A 45(4) (2002), 479–483. doi: 10.1007/BF02872336
  • R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol. 129, Chapman & Hall/CRC, Boca Raton, FL, 2003.
  • C.-H. Chu, T. Dang, B. Russo, and B. Ventura, Surjective isometries of real C∗-algebras, J. London Math. Soc. (2)(1) 47 (1993), 97–118. doi: 10.1112/jlms/s2-47.1.97
  • M. Cueto-Avellaneda and A.M. Peralta, On the Mazur–Ulam property for the space of Hilbert-space-valued continuous functions, J. Math. Anal. Appl. 479(1) (2019), 875–902. doi: 10.1016/j.jmaa.2019.06.056
  • M. Cueto-Avellaneda and A.M. Peralta, The Mazur–Ulam property for commutative von Neumann algebras, Linear and Multilinear Algebra 68(2) (2020), 337–362. doi: 10.1080/03081087.2018.1505823
  • T. Dang, Real isometries between JB∗-triples, Proc. Amer. Math. Soc. 114(4) (1992), 971–980.
  • C.M. Edwards, F.J. Fernández-Polo, C.S. Hoskin, and A.M. Peralta, On the facial structure of the unit ball in a JB∗-triple, J. Reine Angew. Math. 641 (2010), 123–144.
  • X.N. Fang and J.H. Wang, Extension of isometries between the unit spheres of normed space E and C(Ω), Acta Math. Sinica (Engl. Ser.), 22 (2006), 1819–1824. doi: 10.1007/s10114-005-0725-z
  • F.J. Fernández-Polo, E. Jordá, and A.M. Peralta, Tingley’s problem for p- Schatten von Neumann classes, J. Spectr. Theory 10(3) (2020), 809–841. doi: 10.4171/JST/313
  • F.J. Fernández-Polo and A.M. Peralta, Tingley’s problem through the facial structure of an atomic JBW∗-triple, J. Math. Anal. Appl. 455 (2017), 750–760. doi: 10.1016/j.jmaa.2017.06.002
  • F.J. Fernández-Polo and A.M. Peralta, On the extension of isometries between the unit spheres of a C∗-algebra and B(H), Trans. Amer. Math. Soc. 5 (2018), 63–80. doi: 10.1090/btran/21
  • F.J. Fernández-Polo and A.M. Peralta, On the extension of isometries between the unit spheres of von Neumann algebras, J. Math. Anal. Appl. 466 (2018), 127–143. doi: 10.1016/j.jmaa.2018.05.062
  • F.J. Fernández-Polo and A.M. Peralta, Low rank compact operators and Tingley’s problem, Adv. Math. 338 (2018), 1–40. doi: 10.1016/j.aim.2018.08.018
  • Y. Friedman and B. Russo, Contractive projections on C0(K), Trans. Amer. Math. Soc. 273(1) (1982), 57–73.
  • Y. Friedman and B. Russo, Function representation of commutative operator triple systems, J. London Math. Soc. (2) 27(3) (1983), 513–524. doi: 10.1112/jlms/s2-27.3.513
  • P. Harmand, D. Werner, and W. Werner, M-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, Vol. 1547, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0084355
  • O. Hatori, The Mazur-Ulam property for uniform algebras, Studia Math., to appear. DOI: 10.4064/sm210703-11-9 arXiv:2107.01515
  • O. Hatori and T. Miura, Real linear isometries between function algebras. II, Cent. Eur. J. Math. 11 (2013), 1838–1842.
  • O. Hatori, S. Oi, and R.S. Togashi, Tingley’s problems on uniform algebras, J. Math. Anal. Appl. 503(2) (2021), Paper No. 125346. doi: 10.1016/j.jmaa.2021.125346
  • O.F.K. Kalenda and A.M. Peralta, Extension of isometries from the unit sphere of a rank-2 Cartan factor, Anal. Math. Phys. 11 (2021), 15. doi: 10.1007/s13324-020-00448-2
  • I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 853–839. doi: 10.2307/2372552
  • W. Kaup, A Riemann Mapping Theorem for bounded symmentric domains in complex Banach spaces, Math. Z. 183 (1983), 503–529. doi: 10.1007/BF01173928
  • T. Miura, Real-linear isometries between function algebras, Cent. Eur. J. Math. 9 (2001), 778–788.
  • M. Mori, Tingley’s problem through the facial structure of operator algebras, J. Math. Anal. Appl. 466(2) (2018), 1281–1298. doi: 10.1016/j.jmaa.2018.06.050
  • M. Mori and N. Ozawa, Mankiewicz’s theorem and the Mazur–Ulam property for C∗-algebras, Studia Math. 250(3) (2020), 265–281. doi: 10.4064/sm180727-14-11
  • G.H. Olsen, On the classification of complex Lindenstrauss spaces, Math. Scand. 35 (1974), 237–258. doi: 10.7146/math.scand.a-11550
  • A.M. Peralta, A survey on Tingley’s problem for operator algebras, Acta Sci. Math. (Szeged) 84 (2018), 81–123. doi: 10.14232/actasm-018-255-0
  • A.M. Peralta, On the extension of surjective isometries whose domain is the unit sphere of a space of compact operators, FILOMAT, to appear. arXiv:2005.11987v1
  • N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Am. Math. Soc. 133 (2005), 1135–1142. doi: 10.1090/S0002-9939-04-07615-4
  • N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function algebras. II, Proc. Edinburg Math. Soc. 48(1) (2005), 219–229. doi: 10.1017/S0013091504000719
  • R. Tanaka, A further property of spherical isometries, Bull. Aust. Math. Soc. 90 (2014), 304–310. doi: 10.1017/S0004972714000185
  • R. Tanaka, The solution of Tingley’s problem for the operator norm unit sphere of complex n × n matrices, Linear Algebra Appl. 494 (2016), 274–285. doi: 10.1016/j.laa.2016.01.020
  • R. Tanaka, Tingley’s problem on finite von Neumann algebras, J. Math. Anal. Appl. 451 (2017), 319–326. doi: 10.1016/j.jmaa.2017.02.013
  • R. Tanaka, Spherical isometries of finite dimensional C∗-algebras, J. Math. Anal. Appl. 445(1) (2017), 337–341. doi: 10.1016/j.jmaa.2016.07.073
  • D. Tingley, Isometries of the unit sphere, Geom. Dedicata 22 (1987), 371–378. doi: 10.1007/BF00147942
  • R.S. Wang, Isometries between the unit spheres of C0(Ω) type spaces, Acta Math. Sci. (English Ed.) 14(1) (1994), 82–89. doi: 10.1016/S0252-9602(18)30093-6
  • X. Yang and X. Zhao, On the extension problems of isometric and nonexpansive mappings, In: Mathematics without boundaries, Themistocles M. Rassias and Panos M. Pardalos, (eds.), pp. 725-748, Springer, New York, 2014.
  • H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48(2) (1983), 117–143. doi: 10.1016/0001-8708(83)90083-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.