1,258
Views
51
CrossRef citations to date
0
Altmetric
Acta Award Winner

Radiographic display of carious lesions and cavitation in approximal surfaces: Advantages and drawbacks of conventional and advanced modalities

Pages 251-264 | Received 01 Nov 2013, Accepted 14 Jan 2014, Published online: 10 Feb 2014

References

  • Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007;369:51–9.
  • Pitts N. “ICDAS”- an international system for caries detection and assessment being developed to facilitate caries epidemiology, research and appropriate clinical management. Community Dent Oral Epidemiol 2004;21:193–8.
  • Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, et al. The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 2007;35:170–8.
  • Topping GV, Pitts NB. Clinical visual caries detection. Monogr Oral Sci 2009;21:15–41.
  • Nyvad B, Machiulskiene V, Baelum V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res 1999;33:252–60.
  • Nyvad B, Machiulskiene V, Baelum V. Construct and predictive validity of clinical caries diagnostic criteria assessing lesion activity. J Dent Res 2003;82:117–22.
  • Ekstrand KR, Martignon S, Ricketts DJ, Qvist V. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Oper Dent 2007;32:225–35.
  • Braga MM, Ekstrand KR, Martignon S, Imparato JC, Ricketts DN, Mendes FM. Clinical performance of two visual scoring systems in detecting and assessing activity status of occlusal caries in primary teeth. Caries Res 2010;44:300–8.
  • Braga MM, Martignon S, Ekstrand KR, Ricketts DN, Imparato JC, Mendes FM. Parameters associated with active caries lesions assessed by two different visual scoring systems on occlusal surfaces of primary molars – a multilevel approach. Community Dent Oral Epidemiol 2010;38:549–58.
  • Bertella N, Moura dos S, Alves LS, Damé-Teixeira N, Fontanella V, Maltz M. Clinical and radiographic diagnosis of underlying dark shadow from dentin (ICDAS) in permanent molars. Caries Res 2013;47:429–32.
  • Ferreira Zandoná A, Santiago E, Eckert GJ, Katz BP, Pereira de Oliveira S, Capin OR, et al. The natural history of dental caries lesions: a 4-year observational study. J Dent Res 2012;91:841–6.
  • Hintze H, Wenzel A, Danielsen B, Nyvad B. Reliability of visual examination, fibre-optic transillumination, and bite-wing radiography, and reproducibility of direct visual examination following tooth separation for the identification of cavitated carious lesions in contacting approximal surfaces. Caries Res 1998;32:204–9.
  • Ratledge DK, Kidd EA, Beighton D. A clinical and microbiological study of approximal carious lesions, 1: the relationship between cavitation, radiographic lesion depth, the site specific gingival index and the level of infection of the dentine. Caries Res 2001;35:3–7.
  • Kidd EAM, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentine related to the action of cariogenic biofilms. J Dent Res 2004;83:C35–8.
  • Kidd EA, Pitts NB. A reappraisal of the value of the bitewing radiograph in the diagnosis of posterior approximal caries. Br Dent J 1990;169:195–200.
  • Pitts NB, Kidd EA. Some of the factors to be considered in the prescription and timing of bitewing radiography in the diagnosis and management of dental caries. J Dent 1992;20:74–84.
  • Machiulskiene V, Nyvad B, Baelum V. A comparison of clincial and radiographic caries diagnoses in posterior teeth of 12-year-old Lithuanian children. Caries Res 1999;33:340–8.
  • Machiulskiene V, Nyvad B, Baelum V. Comparison of diagnostic yields of clinical and radiographic caries examination in children of different age. Eur J Paediatr Dent 2004;5:157–62.
  • Pooterman JH, Aartman IH, Kalsbeek H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study. Community Dent Oral Epidemiol 1999;27:331–7.
  • Lillehagen M, Grindefjord M, Mejáre I. Detection of approximal caries by clinical and radiographic examination in 9-year-old Swedish children. Caries Res 2007;41:177–85.
  • Mialhe FL, Pereira AC, Meneghim MC, Ambrosano GM, Pardi V. The relative diagnostic yields of clinical, FOTI and radiographic examination for the detection of approximal caries in youngsters. Indian J Dent Res 2009;20:136–40.
  • Braga MM, Mendes FM, Ekstrand KR. Detection activity assessment and diagnosis of dental caries lesions. Dent Clin North Am 2010;54:479–93.
  • Wenzel A. Dental caries. In White SC, Pharoah MJ, editors. Oral radiology, principles and interpretation. 6th ed. St. Louis, MO: Mosby; 2009. p 297–313.
  • Arnold WH, Gaengler P, Saeuberlich E. Distribution and volumetric assessment of initial approximal caries lesions in human premolars and permanent molars using computer-aided three-dimensional reconstruction. Arch Oral Biol 2000;45:1065–71.
  • Allison PJ, Schwartz S. Interproximal contact points and proximal caries in posterior primary teeth. Pediatr Dent 2003;25:334–40.
  • Jacobsen JH, Hansen B, Wenzel A, Hintze H. Relationship between histological and radiographic caries lesion depth measured in images from four digital radiography systems. Caries Res 2004;38:34–8.
  • Young DA, Featherstone JD. Digital imaging fiber-optic trans-illumination, F-speed radiographic film and depth of approximal lesions. J Am Dent Assoc 2005;136:1682–7.
  • Pearce EI, Coote GE, Larsen MJ. The distribution of fluoride in carious human enamel. J Dent Res 1995;74:1775–82.
  • Pitts NB. The use of bitewing radiographs in the management of dental caries: scientific and practical considerations. Dentomaxillofac Radiol 1996;25:5–16.
  • Skeie MS, Raadal M, Strand GV, Espelid I. Caries in primary teeth at 5 and 10 years of age: a longitudinal study. Eur J Paediatr Dent 2004;5:194–202.
  • Mejáre I, Stenlund H, Zelezny-Holmlund C. Caries incidence and lesions progression from adolescence to young adulthood: a prospective 15-year cohort study in Sweden. Caries Res 2004;38:130–41.
  • Mejáre I. Bitewing examination to detect caries in children and adolescents - when and how often? Dent Update 2005;32:588–90; 593–4, 596–7.
  • Wenzel A. Bitewing and digital bitewing projection for detection of caries lesions. J Dent Res 2004;83:C72–5.
  • Wenzel A. A review of dentists' use of digital radiography and caries diagnosis with digital systems. Dentomaxillofac Radiol 2006;35:307–14.
  • Wenzel A, Møystad A. Work flow with intraoral digital radiography: a systematic review. Acta Odontol Scand 2010;68:106–14.
  • Wenzel A. Digital radiography and caries diagnosis. Dentomaxillofac Radiol 1998;27:3–11.
  • Wenzel A. Digital imaging for dental caries. Dent Clin North Am 2000;44:319–38.
  • Raper HR. Practical clinical preventive dentistry based upon periodic roentgen-ray examinations. J Am Dent Assoc 1925;1084–100.
  • Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making 1991;11:88–94.
  • Petersen LB, Christensen J, Rose K, Wenzel A. Health technology assessment (HTA) in odontology. Dan Dent J 2012;10:726–34; in Danish with an English summary.
  • Vanderas AP, Skamnakis J. Effectiveness of preventive treatment on approximal caries progression in posterior primary and permanent teeth: a review. Eur J Paediatr Dent 2003;4:9–15.
  • Norlund A, Axelsson S, Dahlén G, Espelid I, Tranaeus S, Twetman S. Economic aspects of the detection of occlusal dentine caries. Acta Odontol Scand 2009;67:38–43.
  • Gotfredsen E, Wenzel A. Economic model for intraoral radiography performed with conventional film, a CCD-based, and a storage phosphor-based system. Conference of the European Association of Dentomaxillofacial Radiology, Malmø, Sweden, 2004.
  • Velders XL, Sanderink GC, van der Stelt PF. Dose reduction of two digital sensor systems measuring file length. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;81:607–12.
  • Syriopoulos K, Velders XL, Sanderink GC, van der Stelt PF. Sensitometric and clinical evaluation of a new F-speed dental x-ray film. Dentomaxillofac Radiol 2001;30:40–4.
  • Ludlow JB, Abreu M Jr, Mol A. Performance of a new F-speed film for caries detection. Dentomaxillofac Radiol 2001;30:110–13.
  • Velders XL, van Aken J, van der Stelt PF. Risk assessment from bitewing radiography. Dentomaxillofac Radiol 1991;20:209–13.
  • Ludlow JB, Davies-Ludlow LE, White SC. Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J Am Dent Assoc 2008;139:1237–43.
  • International Commission on Radiation Protection. Publication 103. The 2007 recommendations of the International Commission on Radiation Protection. 2008;37:2–4.
  • Pitts NB, Hammond SS, Longbottom C. Initial development and in vitro evaluation of the HPL device for obtaining reproducible bitewing radiographs of children. Oral Surg Oral Med Oral Pathol 1991;71:625–34.
  • Wenzel A, Anthonisen PN, Juul MB. Reproducibility in the assessment of caries lesion behaviour: a comparison between conventional film and subtraction radiography. Caries Res 2000;34:214–18.
  • Pierro VS, Barcelos R, de Souza IP, Raymundo RJ. Pediatric bitewing film holder: preschoolers' acceptance and radiographs' diagnostic quality. Pediatr Dent 2008;30:342–7.
  • Bahrami G, Hagstrøm C, Wenzel A. Bitewing examination with four digital receptors. Dentomaxillofac Radiol 2003;32:317–21.
  • Gonçalves A, Wiezel VG, Gonçalves M, Hebling J, Sannomiya EK. Patient comfort in periapical examination using digital receptors. Dentomaxillofac Radiol 2009;38:484–8.
  • Jørgensen PM, Wenzel A. Patient discomfort in bitewing examination with film and four digital receptors. Dentomaxillofac Radiol 2012;41:323–7.
  • Mariath AA, Casagrande L, de Araujo FB. Grey levels and radiolucent lesion depth as cavity predictors for approximal dentin caries lesions in primary teeth. Dentomaxillofac Radiol 2007;36:377–81.
  • Wenzel A, Hirsch E, Christensen J, Matzen LH, Scaf G, Frydenberg M. Detection of cavitated approximal surfaces using cone beam CT and intraoral receptors. Dentomaxillofac Radiol 2013;42:39458105.
  • Sansare K, Singh D, Sontakke S, Karjodkar F, Saxena V, Frydenberg M, et al. Should cavitation in proximal surfaces be reported in a CBCT examination? Caries Res 2014;48:208–13.
  • Bille J, Thylstrup A. Radiographic diagnosis and clinical tissues changes in relation to the treatment of approximal carious lesions. Caries Res 1982;16:1–6.
  • Thylstrup A, Bille J, Qvist V. Radiographic and observed tissue changes in approximal carious lesions at the time of operative treatment. Caries Res 1986;20:75–84.
  • Pitts NB, Rimmer PA. An in vivo comparison of radiographic and directly assessed clinical caries status of posterior approximal surfaces in primary and permanent teeth. Caries Res 1992;26:146–52.
  • Pitts NB, Longbottom C. Temporary tooth separation with special reference to the diagnosis and management of equivocal approximal carious lesions. Quintessence Int 1987;18:563–73.
  • Rimmer PA, Pitts NB. Temporary elective tooth separation as a diagnostic aid in general dental practice. Br Dent J 1990;169:87–92.
  • Seddon RP. The detection of cavitation in carious approximal surfaces in vivo by tooth separation, impression and scanning electron microscopy. J Dent 1989;17:117–20.
  • Hintze H, Wenzel A, Danielsen B. Behaviour of approximal carious lesions assessed by clinical examination after tooth separation and radiography: a 2.5-year longitudinal study in young adults. Caries Res 1999;33:415–22.
  • Baelum V, Hintze H, Wenzel A, Danielsen B, Nyvad B. Implications of caries diagnostic strategies for clinical management decisions. Community Dent Oral Epidemiol 2012;40:257–66.
  • Novaes TF, Matos R, Braga MM, Imparato JC, Raggio DP, Mendes FM. Performance of a pen-type laser fluorescence device and conventional methods in detecting approximal caries lesions in primary teeth - in vivo study. Caries Res 2009;43:36–42.
  • Mejàre I, Malmgren B. Clinical and radiographic appearance of proximal carious lesions at the time of operative treatment in young permanent teeth. Scand J Dent Res 1986;94:19–26.
  • Mejàre I, Gröndal HG, Carlstedt K, Grever AC, Ottosson E. Accuracy at radiography and probing for the diagnosis of proximal caries. Scand J Dent Res 1985;93:178–84.
  • Lunder N, von der Fehr FR. Approximal cavitation related to bite-wing image and caries activity in adolescents. Caries Res 1996;30:143–7.
  • Matalon S, Feuerstein O, Calderon S, Mittleman A, Kaffe I. Detection of cavitated carious lesions in approximal tooth surfaces by ultrasonic caries detector. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:109–13.
  • de Araujo FB, Rosito DB, Toigo E, dos Santos CK. Diagnosis of approximal caries: radiographic versus clinical examination using tooth separation. Am J Dent 1992;5:245–8.
  • Akpata ES, Farid MR, Al-Saif K, Roberts EAU. Cavitation at radiolucent areas on proximal surfaces of posterior teeth. Caries Res 1996;30:313–16.
  • Sansare K, Raghav M, Sontakke S, Karjodkar FR, Wenzel A. Relationship between clinical cavitation and radiographic lesion depth in proximal surfaces in an Indian population. J Dent 2014; submitted.
  • Kielbassa AM, Paris S, Lussi A, Meyer-Lueckel H. Evaluation of cavitations in proximal caries lesions at various magnification levels in vitro. J Dent 2006;34:817–22.
  • Espelid I, Tveit A, Haugejorden O, Riordan PJ. Variation in radiographic interpretation and restorative treatment decisions on approximal caries among dentists in Norway. Community Dent Oral Epidemiol 1985;13:26–9.
  • Espelid I. Radiographic diagnoses and treatment decisions on approximal caries. Community Dent Oral Epidemiol 1986;14:265–70.
  • Mileman PA, Espelid I. Decision on restorative treatment and recall intervals based on bitewing radiographs. A comparison between national surveys of Dutch and Norwegian practitioners. Community Dent Health 1988;5:273–84.
  • Nuttall NM, Pitts NB. Restorative treatment thresholds reported to be used by dentists in Scotland. Br Dent J 1990;169:119–26.
  • Espelid I, Tveit A, Riordan PJ. Radiographic caries diagnosis by clinicians in Norway and Western Australia. Community Dent Oral Epidemiol 1994;22:214–19.
  • Mejáre I, Sundberg H, Espelid I, Tveit B. Caries assessment and restorative treatment thresholds reported by Swedish dentists. Acta Odontol Scand 1999;57:149–54.
  • Tan PL, Evans RW, Morgan MV. Caries, bitewings, and treatment decision. Aust Dent J 2002;47:138–41.
  • Tubert-Jeannin S, Doméjean-Orliaquet S, Riordan PJ, Espelid I, Tveit AB. Restorative treatment strategies reported by French university teachers. J Dent Educ 2004;68:1096–103.
  • Doméjean-Orliaquet S, Tubert-Jeannin S, Riordan PJ, Espelid I, Tveit AB. French dentists' restorative treatment decisions. Oral Health Prev Dent 2004;2:125–31.
  • Baraba A, Doméjean-Orliaquet S, Espelid I, Tveit AB, Miletic I. Survey of Croatian dentists' restorative treatment decisions on approximal caries lesions. Croat Med J 2010;51:509–14.
  • Baraba A, Doméjean S, Juric H, Espelid I, Tveit AB, Anic I. Restorative treatment decision of Croatian university teachers. Coll Antropol 2012;36:1293–9.
  • Tveit AB, Espelid I, Skodje F. Restorative treatment decisions on approximal caries in Norway. Int Dent J 1999;49:165–72.
  • Vidnes-Kopperud S, Tveit AB, Espelid I. Changes in the treatment concept for approximal caries from 1983 to 2009 in Norway. Caries Res 2011;45:113–20.
  • Riordan PJ, Espelid I, Tveit AB. Radiographic interpretation and treatment decisions among dental therapists and dentists in Western Australia. Community Dent Oral Epidemiol 1991;19:268–71.
  • Haak R, Wicht MJ. Radiographic and other additional diagnostic methods In Meyer-Lueckel H, Paris S, Ekstrand KR, editors. Caries management - science and clinical practice. Stuttgart: Georg Thieme Verlag KG; 2013. p 87–100.
  • Ekstrand KR, Zahir H, Twetman S. Caries diagnostics and risk assessment in dental practice for adults. Danish Dent J 2013;3:212–23; in Danish with an English summary.
  • Vanderas AP, Manetas C, Koulatzidou M, Papagiannoulis L. Progression of proximal caries in the mixed dentition: a 4-year prospective study. Pediatr Dent 2003;25:229–34.
  • Mejàre I, Källest IC, Stenlund H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: a prospective radiographic study. Caries Res 1999;33:93–100.
  • Lith A, Lindstrand C, Gröndahl HG. Caries development in a young population managed by a restrictive attitude to radiography and operative intervention: II. A study at the surface level. Dentomaxillofac Radiol 2002;31:232–9.
  • David J, Raadal M, Wang NJ, Strand GV. Caries increment and prediction from 12 to 18 years of age: a follow-up study. Eur Arch Paediatr Dent 2006;7:31–7.
  • Vanderas AP, Gizani S, Papagiannoulis L. Progression of proximal caries in children with different caries indices: a 4-year radiographic study. Eur Arch Paediatr Dent 2006;7:148–52.
  • Foster LV. Three year in vivo investigation to determine the progression of approximal primary carious lesions extending into dentine. Br Dent J 1998;185:353–7.
  • Martignon S, Chavarria N, Ekstrand KR. Caries status and proximal lesion behaviour during a 6-year period in young adult Danes: an epidemiological investigation. Clin Oral Invest 2010;14:383–90.
  • Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am 2008;52:707–30.
  • Davies J, Johnson B, Drage N. Effective dose from cone beam CT investigation of the jaws. Dentomaxillofac Radiol 2012;41:30–6.
  • Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review. J Digit Imaging 2013;26:813–20.
  • Şenel B, Kamburoğlu K, Üçok Ö, Yüksel SP, Özen T, Avsever H. Diagnostic accuracy of different imaging modalities in detection of proximal caries. Dentomaxillofac Radiol 2010;39:501–11.
  • Haiter-Neto F, Wenzel A, Gotfredsen E. Diagnostic accuracy of cone beam computed tomography scans compared with intraoral image modalities for detection of caries lesions. Dentomaxillofac Radiol 2008;37:18–22.
  • Kalathingal SM, Mol A, Tyndall DA, Caplan DJ. In vitro assessment of cone beam local computed tomography for proximal caries detection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:699–704.
  • Tsuchida R, Araki K, Okano T. Evaluation of a limited cone beam volumetric imaging system: comparison with film radiography in detecting incipient proximal caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:412–16.
  • Kayipmaz S, Sezgin ÖS, Saricaoğlu ST, Can G. An in vitro comparison of diagnostic abilities of conventional radiography, storage phosphor, and cone beam computed tomography to determine occlusal and approximal caries. Eur J Radiol 2011;80:478–82.
  • Zhang ZL, Qu XM, Li G, Zhang ZY, Ma XC. The detection accuracies for proximal caries by cone-bea, computerized tomography, film, and phosphor plates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:103–8.
  • Qu X, Li G, Zhang Z, Ma X. Detection accuracy of in vitro approximal caries by cone beam computed tomography images. Eur J Radiol 2011;79:e24–7.
  • Akdeniz BG, Gröndahl HG, Magnusson B. Accuracy of proximal caries depth measurements: comparison between limited cone beam computed tomography, storage phosphor and film radiography. Caries Res 2006;40:202–7.
  • Young SM, Lee JT, Hodges RJ, Chang TL, Elashoff DA, White SC. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries. Dentomaxillofac Radiol 2009;38:445–51.
  • Haak R, Wicht MJ, Ritter L, Kusakis P, Noack MJ. Cone beam tomography for the detection of approximal carious cavitations. Caries Res 2006;40:346.
  • Christell H, Birch S, Hedesiu M, Horner K, Ivanauskaité D, Nackaerts O, et al. Variation in costs of cone beam CT examinations among healthcare systems. Dentomaxillofac Radiol 2012;41:571–7.
  • Petersen LB, Olsen KR, Christensen J, Wenzel A. Absolute and relative costs comparing cone beam computed tomography and panoramic imaging before removal of impacted mandibular third molars. Dentomaxillofac Radiol 2014; submitted.
  • Ludlow J, Davies-Ludlow L, Brooks S, Howerton W. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol 2006;35:219–26.
  • Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:106–14.
  • Rottke D, Patzelt S, Poxleitner P, Schulze D. Effective dose span of ten different cone beam CT devices. Dentomaxillofac Radiol 2013;42:20120417.
  • Schilling R, Geibel MA. Assessment of the effective doses from two dental cone beam CT devices. Dentomaxillofac Radiol 2013;42:20120273.
  • Al-Okshi A, Nilsson M, Petersson A, Wiese M, Lindh C. Using GafChromic film to estimate the effective dose from dental cone beam CT and panoramic radiography. Dentomaxillofac Radiol 2013;42:20120343.
  • Morant JJ, Salvadó M, Hernández-Girón I, Casanovas R, Ortega R, Calzado A. Dosimetry of cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms. Dentomaxillofac Radiol 2013;42:92555893.
  • Qu XM, Li G, Ludlow JB, Zhang ZY, Ma XC. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:770–6.
  • Suomalainen A, Kiljunen T, Käser Y, Peltola J, Kortesniemi M. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol 2009;38:367–78.
  • Okano T, Harata Y, Sugihara Y, Sakaino R, Tsuchida R, Iwai K, et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dentomaxillofac Radiol 2009;38:79–85.
  • Hirsch E, Wolf U, Heinicke F, Silva MA. Dosimetry of the cone beam computed tomography Veraviewepocs 3D compared with the 3D Accuitomo in different fields of view. Dentomaxillofac Radiol 2008;37:268–73.
  • Lofthag-Hansen S, Thilander-Klang A, Ekestubbe A, Helmrot E, Gröndahl K. Calculating effective dose on a cone beam computed tomography device: 3D Accuitomo and 3D Accuitomo FPD. Dentomaxillofac Radiol 2008;37:72–9.
  • Scarfe WC. Radiation risk in low-dose maxillofacial radiography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:277–80.
  • Radiation protection, no. 136. European guidelines on radiation protection in dental radiology. European Commission. Doctorate – General for Energy and Transport Doctorate H – Nuclear Safety and Safeguards Unit H.4 – Radiation Protection, Luxembourg; 2004.
  • Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011;40:265–73.
  • Schulze RK, Berndt D, d'Hoedt B. On cone beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res 2010;21:100–7.
  • Hunter AK, McDavid WD. Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofac Radiol 2012;41:217–23.
  • Benic GI, Sancho-Puchades M, Jung RE, Deyhle H, Hämmerle CH. In vitro assessment of artifacts induced by titanium dental implants in cone beam computed tomography. Clin Oral Implants Res 2013;24:378–83.
  • Cremonini CC, Dumas M, Pannuti CM, Neto JB, Cavalcanti MG, Lima LA. Assessment of linear measurements of bone for implant sites in the presence of metallic artefacts using cone beam computed tomography and multislice computed tomography. Int J Oral Maxillofac Surg 2011;40:845–50.
  • Naitoh M, Saburi K, Gotoh K, Kurita K, Ariji E. Metal artifacts from posterior mandibular implants as seen in CBCT. Implant Dent 2013;22:151–4.
  • Pauwels R, Stamatikis H, Bosmans H, Jacobs R, Horner K, Tsiklakis K. Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res 2013;100:94–9.
  • Bechara BB, McMahan CA, Geha H, Noujeim M. Evaluation of a cone beam CT artifact reduction algorithm. Dentomaxillofac Radiol 2012;41:422–8.
  • Bechara BB, Moore WS, McMahan CA, Noujeim M. Metal artifact reduction with cone beam CT: an in vitro study. Dentomaxillofac Radiol 2012;41:248–53.
  • Bechara BB, McMahan CA, Moore WS, Noujeim M, Teixeira FB, Geha H. Cone beam scans with and without artifact reduction in root fracture detection of endodontically treated teeth. Dentomaxillofac Radiol 2013;42:20120245.
  • Neller H, Geibel MA. Comparison of cone beam computed tomography scans with and without simulation of head motion. Int J Comput Dent 2012;15:287–96.
  • Spin-Neto R, Mudrak J, Matzen LH, Christensen J, Gotfredsen E, Wenzel A. Cone Beam CT image artifacts related to head motion simulated by a robot skull: visual characteristics and impact on image quality. Dentomaxillofac Radiol 2013;42:32310645.
  • Donaldson K, O'Connor S, Heath N. Dental cone beam CT image quality possibly reduced by patient movement. Dentomaxillofac Radiol 2013;42:91866873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.