239
Views
65
CrossRef citations to date
0
Altmetric
Original Article

Development of the Human Cochlea

, &
Pages 7-13 | Published online: 08 Jul 2009

Reference

  • Pujol R, Uziel A. Auditory development peripheral aspects. Handbook of human growth and developmental biology. Neural, sensory, motor, and integrative development. Part B. Sensory, motor, and integrative development., E. PS. Meisami Timiras. CRC Press, Boca Raton 1988; Vol I.: 109–30
  • Retzius G. Gehörorgan des Wirbeltiere. Das Gehörorgan der Reptilien. der Vögel, und der Säugetiere. Samsom and Wallin, Stockholm 1884; Vol 2.
  • Streeter GL. The development of the scala tympani, scaia vestibuli and perioticular cistern in the human embryo. Am J Anat 1917; 21: 299–320
  • Bast T. H., Anson BJ. The temporal bone and ear. Charles C Thomas, Springfield 1949
  • Bredberg G. Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol (Stockh) 1968, Suppl 236
  • Pujol R, Lavigne-Rebillard M. Early stages of innervation and sensory cell differentiation in the human organ of Corti. Acta Otolaryngol (Stockh) 1985; 43–50, Suppl 423
  • Pujol R, Hilding DA. Anatomy and physiology of the onset of auditory function. Acta Otolaryngol (Stockh) 1973; 76: 1–10
  • Lavigne-Rebillard M, Pujol R. Hair cell innervation in the fetal human cochlea. Acta Otolaryngol (Stockh) 1988; 105: 398–402
  • Lavigne-Rebillard M, Pujol R. Development of auditory hair cell surface in human fetuses: a scanning electron microscopy study. Anat Embryol 1986; 174: 369–77
  • Pujol R, Sans A. Synaptogenesis in the mammalian inner ear. Advances in neural and behavioral development., R Aslin. Ablex Press, Norwood, New York 1986; 1–18
  • Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM. Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 1985; 18: 145–51
  • Eybalin M, Pujol R. Cochlear neuroactive substances. Arch Otorhinolaryngol 1989; 246: 228–234
  • Nadol JB. Serial section reconstruction of the neural poles of the hair cells in the human organ of Corti. II. Outer hair cells. Laryngoscope 1983; 93: 780–91
  • Lavigne-Rebillard M, Pujol R. Auditory hair cells in human fetuses: synaptogenesis and ciliogenesis. J Electron Microsc Tech 1990; 15: 115–122
  • Kawabata I, Nomura Y. Extra Internal hair cells: a scanning electron microscopic study. Acta Otolaryngol (Stockh) 1978; 85: 342–8
  • Lenoir M, Puet J. L., Pujol R. SEM study of the rat cochlear development with emphasis on stereocilia and tectorial membrane. Anat Embryol 1987; 175: 477–87
  • Rebillard G, Abbou S, Lenoir M. Les oto-émissions acoustiques. II. Les oto-émissions sponta-nées: résultats chez des sujets normaux ou présentant des acouphènes. Ann Otolaryngol (Paris) 1987; 104: 363–8
  • Kemp D. T., Rygan S. Practical experience with advanced cochlear echo screening methods on infants 0–3 years. Acta Otolaryngol (Stockh) 1991; 73–84, this supplement
  • Uziel A, Piron J-P. Applications of otacoustic emissions in the intensive care units of neonatology. Acta Otolaryngol (Stockh) 1991; 85–91, this supplement
  • Romand R. Development of auditory and vestibular systems. Academic Press, New York 1983
  • Rubel EW. Ontogeny of structure and function in the vertebrate auditory system. Handbook of sensory physiology., H. Autrum Jung, WR. Loewenstein, R. Mac, D. M. Kay, H. L. Teuber. Springer-Verlag, Berlin 1978; Vol 9: 135–237
  • Schulman-Galambos C, Galambos R. Brainstem auditory evoked responses in premature infants. J Speech Hear Res 1975; 18: 456–65
  • Starr A, Amlie R. N., Martin W. H., Sanders S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics 1977; 60: 831–9
  • Uziel A, Marot M, Germain M. Les potentiels evoques du nerf auditif et du tronc cérébral chez le nouveau-né et l'enfant. Rev Laryngol Otol Rhinol 1980; 101: 55–9
  • Birnholz J. C., Benacerraf BR. Development of human fetal hearing. Science 1983; 222: 516–8
  • Sonntag L. W., Wallace RF. Changes in the rate of human fetal heart in response to vibratory stimuli. Am J Obstet Dis Child 1936; 51: 583–9
  • Read J. A., Miller FC. Fetal heart rate acceleration in response to acoustic stimulation as a measure of fetal well-being. Am J Obstet Gynecol 1977; 129: 512–7
  • Puel J. L., Uziel A. Correlative development of cochlear action potential sensitivity, latency, and frequency selectivity. Dev Brain Res 1987; 37: 179–88
  • Uziel A. Environmental factors affecting hearing development critical periods. Acta Otolaryngol (Stockh) 1985; 57–61, Suppl. 421
  • Pujol R. Synaptic plasticity in the developing cochlea. The biology of change in otolaryngology., RTR. Ruben, W. Van de Water, E. W. Rubel. Elsevier Science Publ BV (Biomedical Division), New York 1986; 47–54
  • Uziel A. Thyroid and the developing ear. The biology of change in otolaryngology., R. W. Ruben, T. R. Van de Water, E. W. Rubel. Elsevier Science Publ BV (Biomedical Division)., New York 1986; 331–8
  • Lenoir M, Pujol R, Bock GR. Critical periods of susceptibility to noise-induced hearing loss., R Salvi, D Henderson, R. P. Hamernik, V. Colletti. Plenum, New York 1986; 227–36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.