36
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Tribute to Yasuji Katsuki's Major Findings: Sharpening of Frequency Tuning in the Central Auditory System

Pages 9-12 | Published online: 08 Jul 2009

References

  • Katsuki Y, Sumi T, Uchiyama H, Watanabe T. Electric responses of auditory neurons in cat to sound stimulation. J Neurophysiol 1958; 21: 569–88
  • Katsuki Y, Watanabe T, Maruyama N. Activity of auditory neurons in upper level of brain of cat. J Neurophysiol 1959; 22: 343–59
  • Aitkin L M., Webster W R. Medial geniculate body of cat: organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 1972; 35: 365–80
  • Calford M B., Webster W R., Semple M M. Measurements of frequency selectivity of single neurons in the central auditory pathway. Hear Res 1983; 11: 395–401
  • Suga N, Manabe T. Neural basis of amplitude‐spectrum representation in the auditory cortex of the mustached bat. J Neurophysiol 1982; 47: 225–55
  • Suga N. Sharpening of frequency tuning by inhibition in the central auditory system: tribute to Yasuji Katsuki. Neurosci Res 1995; 21: 287–99
  • Suga N. Amplitude‐spectrum representation in the Doppler‐shifted‐CF processing area of the auditory cortex of the mustached bat. Science Wash DC 1977; 196: 64–7
  • Grinnell A D. The neurophysiology of audition in bat: intensity and frequency parameters. J Physiol (Lond) 1963; 167: 38–66
  • Suga N. Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. J Physiol (Lond) 1964; 172: 449–74
  • Suga N. Recovery cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J Physiol (Lond) 1964; 175: 50–80
  • Suga N. Analysis of frequency modulated and complex sounds by neurons of echolocating bats. J Physiol (Lond) 1965; 179: 26–53
  • Suga N. Functional properties of auditory neurons in the cortex of echolocating bats. J Physiol (Lond) 1965; 181: 671–700
  • Suga N. Responses of inferior collicular neurons of bats to tone bursts with different rise times. J Physiol (Lond) 1971; 217: 159–77
  • Suga N, Schlegel P. Coding and processing in the auditory systems of FM‐signal‐producing bats. J Acoust Soc Am 1973; 54: 174–90
  • Condon C J., White K R., Feng A S. Processing of amplitude‐modulated signals that mimic echoes from fluttering targets in the inferior colliculus of the little brown bat, Myotis lucifugus. J Neurophysiol 1994; 71: 768–84
  • Suga N. Classification of inferior collicular neurons of bats in terms of responses to pure tones, FM sounds and noise bursts. J Physiol (Lond) 1969; 200: 555–74
  • Suga N, Simmons J A., Jen P H S. Peripheral specialization for fine analysis of Doppler‐shifted echoes in the auditory system of the “CF‐FM” bat Pteronotus parnellii. J Exp Biol 1975; 63: 161–92
  • Sua N, O'Neill W E., Manabe T. Harmonic‐sensitive neurons in the auditory cortex of the mustached bat. Science Wash DC 1979; 203: 207–74
  • Suga N, Tsuzuki K. Inhibition and level‐tolerant frequency tuning in the auditory cortex of the mustached bat. J Neurophysiol 1985; 53: 1109–45
  • O'Neill W E. Responses to pure tones and linear FM components of the CF‐FM biosonar signal by single units in the inferior colliculus of the mustached bat. J Comp Physiol 1985; 157: 797–815
  • Olsen J F., Suga N. Combination‐sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. J Neurophysiol 1991; 65: 1254–74
  • Yang L, Pollak G D., Resler C. GABAergic circuits sharpen tuning curves and modify response properties in the mustache bat inferior colliculus. J Neurophysiol 1992; 68: 1760–74
  • Metzner W, Radtke‐Schuller S. The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A 1987; 160: 395–411
  • Rübsamen R, Schäfer M. Ontogenesis of auditory fovea representation in the inferior colliculus of the Sri Lankan rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol A 1990; 167: 757–69
  • Vater M, Habbicht H, Kösl M, Grothe B. The functional role of GABA and glycine in monaural and binaural processing in the inferior colliculus of horseshoe bat. J Comp Physiol 1992; 171: 541–53
  • Casseday J H., Covey E. Frequency tuning properties of neurons in the inferior colliculus of an FM bat. J Comp Physiol 1992; 319: 34–50
  • Fuzessery Z M. Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus. J Neurophysiol 1994; 72: 1061–79
  • Ehret G, Moffat A J M. Inferior colliculus of the house mouse. II. Single unit responses to tones, noise and tone‐noise combinations as a function of sound intensity. J Comp Physiol 1985; 156: 619–35
  • Greenwood D D., Maruyama N. Excitatory and inhibitory response areas of auditory neurons in the cochlear nucleus. J Neurophysiol 1965; 28: 863–92
  • Abeles M, Goldstein M H., Jr. Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 1970; 33: 172–87
  • Evans E F., Nelson P E. The responses of single neurons in the cochlear nucleus of the cat as a function of their location and the anesthetic state. Exp Brain Res 1973; 17: 402–27
  • Godfrey D A., Kiang N Y S, Norris B E. Single unit activity in the dorsal cochlear nucleus of the cat. J Comp Neurol 1975; 162: 169–284
  • Young E D., Brownell W E. Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 1976; 39: 282–300
  • Phillips D P., Orman S S., Musicant A D., Wilson G F. Neurons in the cat's primary auditory cortex distinguished by their responses to tones and wide‐spectrum noise. Hear Res 1985; 18: 73–86
  • Schreiner C E., Mendelson J R. Functional topography of cat primary auditory cortex: distribution of integrated excitation. J Neurophysiol 1990; 64: 1442–59
  • Spirou G A., Young E D. Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by band‐limited noise. J Neurophysiol 1991; 66: 1750–68
  • Sutter M L., Schreiner C E. Physiology and topography of neurons with multi peaked tuning curves in cat primary auditory cortex. J Neurophysiol 1991; 65: 1207–26
  • Schreiner C E., Sutler M L. Topography of excitatory bandwidth in cat primary auditory corlex: single‐neurons versus multiple‐neuron recordings. J Neurophysiol 1992; 68: 1487–502
  • Leppelsack H J. Funktionelle Eizenschaflen der Hörbahn im Feld L des Neo‐striatum candale des Staren. J Comp Physiol A 1974; 88: 271–320
  • Fuzessery Z M., Feng A S. Frequency seleclivily in the anuran auditory midbrain: single unit responses to single and multiple tone stimulation. J Comp Physiol A Sens Neural Behav Physiol 1982; 146: 471–84
  • Suga N, Zhang Y, Yan J. Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J Neurophysiol 1997; 77: 2098–114
  • Calford M B., Semple M N. Monaural inhibition in cat auditory cortex. J Neurophysiol 1995; 73: 1876–91
  • Zhang Y, Suga N, Yan J. Corticofugal modulation of frequency processing in bat auditory system. Nature 1997; 387: 900–3
  • Katsuki Y. Neural mechanism of auditory sensation in cals. Sensory communication, W A. Rosenblilh. MIT Press, Cambridge, MA 1961; 561–83
  • Schnitzler H U. Die Ultraschall‐Ortungslaute der Hufeisen‐Fledermause (Chiroptera‐Rhinolphidae) in verschiedenen Orientierungs‐situationen. Zool Vergl Physiol 1968; 57: 376–408
  • Schnitzler H U. Echoortung bei der Fledermaus Chilonycteris rubiginosa. Zool Vergl Physiol 1970; 68: 25–38
  • Schuller G, Beuter K, Schnitzler H U. Response to frequency‐shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol 1974; 89: 275–86
  • Henson O W., Jr, Bishop A, Keating A, et al. Biosonar imaging of insects by Pteronotus p. parnelli, the mustached bat. Natl Geogr Res 1987; 3: 82–101
  • Gaioni S J., Riquimaroux H, Suga N. Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. J Neurophysiol 1990; 64: 1801–17
  • Suga N, Jen P H S. Disproportionate tonotopic representation for processing species‐specific CF‐FM sonar signals in the mustached bal auditory cortex. Science Wash DC 1976; 194: 542–4
  • Suga N, Niwa H, Taniguchi I, Margoliash D. The personalized auditory cortex of the muslached bat: adaptalion for echolocation. J Neurophysiol 1987; 58: 643–54
  • Riquimaroux H, Gaion S J., Suga N. Cortical computational maps control auditory perception. Science Wash DC 1991; 251: 565–8
  • Master W M., Jacobs S C., Simmons J A. The slruclure of echolocalion sounds used by the big brown bal Eptesicus fuscus: some consequences for echo processing. J Acoust Soc Am 1991; 89: 1402–13
  • Sales G, Pye D. Ultrasonic cómmunicalion by animals. Wiley, New York 1974; 230–3
  • Suga N. Analysis of frequency‐modulaled and complex sounds by single audilory neurons of bats. J Physiol (Lond) 1968; 198: 51–80
  • Suga N. Specialization of the auditory system for reception and processing of species‐specific sounds. Fed Proc Fed Am Soc Exp Biol, 37: 2342–54
  • Caspary D M., Backoff P M., Finlayson P G., Palombi P S. Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J Neurophysiol 1994; 72: 2124–33
  • Palombi P S., Caspary D M. GABAA receptor antagonist bicuculline alters response properties of osteroventral cochlear nucleus neurons. J Neurophysiol 1992; 67: 738–46
  • Evans E F., Zhao W. Varieties of inhibition in the processing and control of processing in the mammalian cochlear nucleus. Prog Brain Res 1993; 97: 117–26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.