167
Views
35
CrossRef citations to date
0
Altmetric
Original Article

The Central Auditory System and Auditory Deprivation: Experience with Cochlear Implants in the Congenitally Deaf

, , , &
Pages 28-33 | Published online: 08 Jul 2009

References

  • Robertson D, Irvine D R F. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 1989; 282: 456–71
  • Rajan R, Irvine D R F, Wise L Z., Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 1993; 338: 17–49
  • Recanzone G H., Schreiner C E., Merzenich M M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 1993; 13: 87–103
  • Rebillard G, Carlier E, Rebillard M, Pujol R. Enhancement of visual responses on the primary auditory cortex of the cat after an early destruction of cochlear receptors. Brain Res 1977; 129: 162–4
  • Otte J, Schuknecht H F., Kerr A G. Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 1978; 88: 1231–46
  • Hinojosa R, Blough R, Mhoon E. Profound sensorineural deafness: A histopathologic study. Ann Otol Rhinol Larynol 1987; 128: 43–6, Suppl
  • Nadol J B., Jr, Young Y S., Glynn R J. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 1989; 98: 411–6
  • Trune D R. Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. I: Number, size, and density of its neurons. J Comp Neurol 1982; 209: 409–24
  • Hashisaki G T., Rubel E W. Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils. J Comp Neurol 1989; 283: 5–73
  • Moore D R. Auditory brainstem of the ferret: early cessation of developmental sensitivity of neurones in the cochlear nucleus to removal of the cochlea. J Comp Neurol 1990; 303: 2–15
  • Nordeen K W., Killackey H P., Kitzes L M. Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 1983; 214: 144–53
  • Moore D R. Auditory brainstem of the ferret: long survival following cochlear removal progressively changes projections from the cochlear nucleus to the inferior colliculus. J Comp Neurol 1994; 339: 301–10
  • Reale R A., Brugge J F., Chan J C K. Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Brain Res 1987; 431: 281–90
  • Wong‐Riley M T T, Merzenich M M., Leake P A. Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity. Brain Res 1978; 141: 185–92
  • Durham D, Rubel E W., Steel K P. Cochlear ablation in deafness mutant mice: 2‐deoxyglucose analysis suggests no spontaneous activity of cochlear origin. Hear Res 1989; 43: 39–46
  • Tucci D L., Rubel E W. Afferent influences on brain stem auditory nuclei of the chicken: effects of conductive and sensorineural hearing loss on n. magnocellu‐laris. J Comp Neurol 1985; 238: 371–81
  • Moore D R., Hutchings M E., King A J., Kowalchuk N E. Auditory brain stem of the ferret: some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, and projections to the inferior colliculus. J Neurosci 1989; 9: 1213–22
  • Webster D B. Sound amplification negates central effects of a neonatal conductive hearing loss. Hear Res 1988; 32: 193–5
  • Hyson R L., Rubel E W. Transneuronal regulation of protein synthesis in the brain‐stem auditory system of the chick requires synaptic activation. J Neurosci 1989; 9: 2835–45
  • Matsushima J I., Shepherd R K., Seldon H L., Xu S A., Clark G M. Electrical stimulation of the auditory nerve in deaf kittens: effects on cochlear nucleus morphology. Hear Res 1991; 56: 133–42
  • Lippe W R. Reduction and recovery of neuronal size in the cochlear nucleus of the chicken following aminoglycoside intoxication. Hear Res 1991; 51: 193–202
  • McMullen N T., Glaser E M. Auditory cortical responses to neonatal deafening: pyramidal neuron spine loss without changes in growth or orientation. Exp Brain Res 1988; 72: 195–200
  • Reale R A., Brugge J F., Chan J C K. Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Brain Res 1987; 431: 281–90
  • Kass J H. Plasticity of sensory and motor maps in adult mammals. Ann Rev Neurosci 1991; 14: 137–67
  • Recanzone G H., Allard T T., Jenkins W M., Merzenich M M. Receptive‐field changes induced by peripheral nerve stimulation in SI of adult cats. J Neurophysiol 1990; 63: 1213–25
  • Hartmann R, Shepherd R K., Heid S, Klinke R. Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hear Res 1997, in press
  • Shepherd R K., Hatsushika S, Clark G M. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hear Res 1993; 66: 108–20
  • Raggio M W., Schreiner C E. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency. J Neurophysiol 1994; 72: 2334–59
  • Shepherd R K., Martin R L., Brown M, Clark G M. Spatial representation of the cochlea within the inferior colliculus of neonatally deafened kittens following chronic electrical stimulation of the auditory nerve. Proc Int Cochlear Implant Speech Hear Symp. Melbourne 1994; 263
  • Lousteau R J. Increased spiral ganglion cell survival in electrically stimulated, deafened guinea pig cochleae. Laryngoscope 1987; 97: 836–42
  • Hartshorn D O., Miller J M., Altschuler R A. Protective effect of electrical stimulation in the deafened guinea pig cochlea. Otolaryngol Head Neck Surgery 1991; 104: 311–9
  • Leake P A., Hradek G T., Rebscher S J., Snyder R L. Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear Res 1991; 54: 251–71
  • Shepherd R K., Matsushima J, Martin R L., Clark G M. Cochlear pathology following chronic electrical stimulation of the auditory nerve II: Deafened kittens. Hear Res 1994; 81: 150–66
  • Lustig L R., Leake P A., Snyder R L., Rebscher S J. Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hear Res 1994; 74: 29–37
  • Snyder R L., Rebscher S J., Cao K, Leake P A., Kelly K. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: Expansion of central representation. Hear Res 1990; 50: 7–34
  • Snyder R L., Leake P A., Rebscher S, Beitel R. Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation. J Neurophysiol 1995; 73: 449–67
  • Raggio M E., Schreiner C E., Beitel R E., Leake P A. Alteration of response threshold distribution in cat primary auditory cortex with chronic electrical stimulation. ARO 1995; 18: 414
  • Blarney P J. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: Etiology, age and duration of deafness. NIH Consensus Development Conference Cochlear Implants in Adults and Children. 1995; 15–20
  • Eddington D K., Dobelle W H., Brackmann D E., Mladejovsky M G., Parkin J L. Auditory prostheses research with multiple channel intracochlear stimulation in man. Ann Otol Rhinol Laryngol 1978; 53: 5–39, Suppl
  • long Y C., Busby P A., Clark G M. Perceptual studies on cochlear implant patients with early onset of profound hearing impairment prior to normal development of auditory, speech, and language skills. J Acoust Soc Am 1988; 84: 951–62
  • Busby P A., Tong Y C., Clark G M. Psychophysical studies using a multiple‐electrode cochlear implant in patients who were deafened early in life. Audiology 1992; 31: 95–111
  • Beggs W D A, Foreman D L. Sound localization and early inaural experience in the deaf. B J Audiol 1980; 14: 41–8
  • Brandes P J., Ehinger D M. The effects of early middle ear pathology on auditory perception and academic achievement. J Speech Hear Dis 1981; 46: 301–6
  • Hoffman‐Lawless K, Keith R W., Cotton R T. Auditory processing abilities in children with previous middle ear effusion. Ann Otol 1981; 90: 543–5
  • Sak R J., Ruben R J. Recurrent middle ear effusion in childhood: implications of temporary auditory deprivation for language and learning. Ann Otol 1981; 90: 546–51
  • Dowell R C., Blarney P J., Clark G M. Potential and limitations of cochlear implants in children. Ann Otol Rhino Laryn 1995; 166: 324–7, Suppl
  • NIH Consensus Development Panel on Cochlear Implants. JAMA, 274: 1955–61
  • Hari R, Pelizzone M, Makela J P., Hällström J, Huttunen J, Knuutila J. Neuromagnetic responses from a deaf subject to stimuli presented through a multichannel cochlear prosthesis. Ear Hear 1988; 9: 148–52
  • Ito J, Sakakibara J, Iwasaki Y, Yonekura Y. Positron emission tomography of auditory sensation in deaf patients and patients with cochlear implants. Ann Otol Rhinol Laryngol 1993; 102: 797–801
  • Herzog H, Lamprecht A, Kuhn A, Roden W, Vosteen K ‐H, Feinendegen L E. Cortical activation in profoundly deaf patients during cochlear implant stimulation demonstrated by H2(15)O PET. J Comp Ass Tomog 1991; 15: 369–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.