19
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Fine Alterations of Distortion-product Otoacoustic Emissions after Moderate Acoustic Overexposure in Guinea Pigs: Alteraciones moderadas de los productos de distorsion de las emisiones otoacusticas después de sobrexposición acústica moderada en cobayos

, , , , &
Pages 113-122 | Received 12 Sep 2000, Published online: 07 Jul 2009

References

  • Kemp D T. Bray P, Alexander L, Brown AM. Acoustic emission cochleo-graphy–practical aspects. Scand Audiol 1986; 25(suppl)71–96
  • Martin G K, Ohlms L A, Franklin D J, Harris F P, Lonsbury-Martin B L. Distortion-product emissions in humans: III: Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol 1990; 147(suppl)29–44
  • Brown A M, Kemp D T. Suppressibility of the 2f1–f2 stimulated acoustic amission in gerbil and man. Hear Res 1984; 13: 29–37
  • Kim D O, Molnar C E, Matthews J W. Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve fiber responses and ear-canal sound pressure. J Acoust Soc Am 1980; 67: 1704–1721
  • Avan P, Magnan P, Smurzynski J, Probst R, Dancer A. Direct evidence of cubic difference tone propagation by mtracochlear acoustic pressure measurements in the guinea-pig. Eur J Neurosci 1998; 10: 1764–1770
  • Mountain D C. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 1980; 210: 71–72
  • Trautwein P, Hofstetter P, Wang J, Salvi R J, Nostrant A. Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res 1996; 96: 71–82
  • Clark W W, Bohne B A. Animal model ior the 4-kHz tonal dip. Ann Otol Rhinol Laryngol 1978; 51(suppl)1–16
  • Hamernik R P, Patterson J H, Turrentine G A, Ahroon W A. The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 1989; 38: 199–212
  • Dolan T G, Abbas P J. Changes in the 2f1–f2 acoustic emission and whole-nerve response following sound exposure: long-term effects. J. Acoust Soc Am 1985; 77: 1475–1483
  • Flinkert P K, Hemmert W, Wagner W, Just K, Zenner H P. Monitoring noise susceptibility: sensitivity of otoacoustic emissions and subjective audiometry. Br J Audiol 1999; 33: 367–382
  • Sutton L A, Lonsbury-Martin B L, Martin G K, Whitehead M L. Sensitivity of distortion-product otoacoustic emissions in humans to tonal overexposure: lime course of recovery and effects of lowering L2. Hear Res 1994; 75: 161–174
  • Engdahl B. Effects of noise and exercise (in distortion product otoacoustic emissions. Hear Res 1996; 93: 72–82
  • Kimberley B P, Brown D K, Eggermont JI. Measuring human cochlear (raveling wave delay using distortion product emission phase responses. J Acoust Soc Am 1993; 94: 1343–1350
  • Avan P, Bonfils P, Loth D. Effects of acoustic overstimulation on distortion-product and transient evoked otoacoustic emissions. Scientific basis of noise-induced hearing loss, A Axelsson, H Borchgrevink, R P Hamernik, P A Hellstrom, D Henderson, R J Salvi. Thieme, New York 1996; 65–81
  • Brown A M, Gaskill S A, Williams D M. Mechanical filtering of sound in the inner ear. Proc R Soc Lond B Biol Sci 1992; 250: 29–34
  • Allen J B, Fahey P F. A second cochlear frequency map that correlates distortion products and neural tuning measurements. J Acoust Soc Am 1993; 94: 809–816
  • Bowman D M, Eggermont JJ, Brown D K, Kimberley B P. Estimating cochlear filter response properties from distortion product otoacoustic emission (DPOAE) phase delay measurements in normal hearing human adults. Hear Res 1998; 119: 14–26
  • Patuzzi R, Robertson D. Tuning in the mammalian cochlea. Physiol Rev 1998; 68: 1009–1082
  • Subramaniam M, Henselman L W, Spongr V, Henderson D, Powers N L. Effects of high-frequency interrupted noise exposures on evoked-potential thresholds, distortion-product otoacoustic emissions, and outer hair cells. Ear Hear 1995; 16: 372–381
  • Allen J B. User manual for the Cubdis distortion product measurement system. AT&T Bell Labs, Murray Hill, NJ 1990
  • Cody A R, Johnstone B M. Acoustic trauma: single neuron basis for the ‘half octave shift’. J Acoust Soc Am 1981; 70: 707–711
  • McFadden D. Intense sounds may alter the mechanical properties of the cochlear partition. J Acoust Soc Am 1983; 74: 447–455
  • Davis H. An active process in cochlear mechanics. Hear Res 1983; 9: 79–90
  • Clark J A, Pickles J O. The effect of moderate and low levels of acoustic overstimulation on stereocilia and their tip links in the guinea pig. Hear Res 1996; 99: 119–128
  • Robertson D, Johnstone B M, McGill T J. Effect of loud tones on the inner ear: a combined electrophysiological and ultrastructural study. Hear Res 1980; 2: 39–53
  • Canlon B, Fransson A. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning. Hear Res 1995; 84: 112–124
  • Gao W Y, Ding D L, Zheng X Y, Ruan F M, Liu Y J. A comparison in the stereocilia between temporary and permanent hearing losses in acoustic trauma. Hear Res 1992; 62: 27–41
  • Brown A M, McDowell B, Forge A. Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res 1989; 42: 143–156
  • Brownell W E. Outer hair cell electro-motility and otoacoustic emissions. Ear Hear 1990; 11: 82–92
  • Probst R, Londbury-Martin B L, Martin G K. A review of otoacoustic emissions. J Acoust Soc Am 1991; 89: 2027–2067
  • Martin G K, Lonsbury-Martin B L, Probst R, Scheinin S A, Coats A C. Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures. Hear Res 1987; 28: 191–208
  • Fahey P F, Allen J B. Measurement of distortion product phase in the ear canal of the cat. J Acoust Soc Am 1997; 102: 2880–2891
  • Talmadge C L, Long G R, Tubis A, Dhar S. Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 1999; 105: 275–292
  • Engstrom B, Flock A, Borg E. Ultrastructural studies of stereocilia in noise-exposed rabbits ears. Hear Res 1983; 12: 251–264
  • Kaltenbach J A, Schmidt R N, Kaplan C R. Tone induced stereocilia lesions as a function of exposure level and duration in the hamster cochlea. Hear Res 1992; 60: 205–215
  • Puel J L, d'Aldin C, Ruel J, Ladrech S, Pujol R. Perspectives in inner ear pharmacology and clinical application. Cochlear pharmacology and noise trauma, D Prasher, B Canlon. Noise Research Network Publications, London 1999; 1–7
  • Puel J L, Bobbin R P, Fallon M. The active process is affected first by intense sound exposure. Hear Res 1988; 37: 53–64
  • Puel J L, Durrieu J P, Rebillard G, Vidal D, Assié R, Uziel A. Comparison between auditory brainstem responses and distortion product otoacoustic emissions after temporary threshold shift in guinea pig. Acta Acust 1995; 3: 75–82
  • Eddins A C, Zuskov M, Salvi R J. Changes in distortion product otoacoustic emissions during prolonged noise exposure. Hear Res 1999; 127: 119–128
  • Attias J, Bresloff I, Reshev I, Horowitz G, Furman V. Evaluating noise induced hearing loss with distortion product otoacoustic emissions. Br J Audiol 1998; 32: 39–46
  • Hamernik R P, Ahroon W A, Lei S F. The cubic distortion product otoacoustic emissions from the normal and noise-damaged chinchilla cochlea. J Acoust Soc Am 1996; 100: 1003–1012
  • Mills D M. Interpretation of distortion product otoacoustic emissions measurements: 1. two stimulus tones. J Acoust Soc Am 1997; 102: 413–429
  • Skellett R A, Crist J R, Fallon M, Bobbin P. Chronic low-level noise exposure alters distortion otoacoustic emissions. Hear Res 1996; 98: 68–76
  • Patuzzi R. Exponential onset and recovery of temporary threshold shift after loud sound: evidence for long-term inactivation of mechano-electrical transduction channels. Hear Res 1998; 125: 17–38
  • Preyer S, Gummer A W. Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment. Audiol Neurootol 1996; 1: 3–11
  • Harris F P, Lonsbury-Martin B L, Stagner B B, Coats A C, Martin G K. Acoustic distortion products in humans: systematic changes in amplitude as a function of f2/f1 ratio. J Acoust Soc Am 1989; 85: 220–229
  • Allen J B. Cochlear micromechanics: a physical model of transduction. J Acoust Soc Am 1980; 68: 1660–1670
  • Stover L J, Neely S T, Gorga M P. Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears. J Acoust Soc Am 1999; 106: 2669–2678
  • Kanis L J, de Boer E. Frequency dependence of acoustic distortion products in a locally active model of the cochlea. J Acoust Soc Am 1997; 101: 1527–1531

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.