37
Views
49
CrossRef citations to date
0
Altmetric
Original Article

Frequency Specificity of Human Distortion Product Otoacoustic Emissions

&
Pages 12-26 | Received 23 Oct 1991, Accepted 17 Jan 1992, Published online: 07 Jul 2009

References

  • Brownell W E, Bader C R, Bertrand D, De Ribaupicrrc Y. Evoked mechanical responses of isolated co-chlear outer hair cells. Science 1985; 227: 194–196
  • Flock A. Hair cells, receptors with a motile capacity. Hearing: Physiological Bases and Psychophysics, R Klinke, R Hartmann. Springer, Berlin 1983; 2–7
  • Zenner HP. Reversible contraction of isolated mammalian cochlcar hair cells. Hear Res 1985; 18: 127–133
  • Neely S T, Kim DO. An active cochlear model showing sharp tuning and high sensitivity. Hear Res 1983; 9: 123–130
  • Kim DO. Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hear Res 1986; 22: 105–114
  • Geisler CD. A model of the effect of outer hair cell motility on cochlear vibrations. Hear Res 1986; 24: 125–131
  • Kemp DT. Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 1978; 64: 1386–1391
  • Kemp D T, Bray P, Alexander L, Brown AM. Acoustic emission cochleography-practical aspects. Scand Audiol 1986; 71–95, (Suppl 25)
  • Bonfils P, Dumont A, Marie P, Francois Narcy M. P. Evoked otoacoustic emissions in newborn hearing screening. Laryngoscope 1990; 100: 186–189
  • Probst R, Lonsburgy-Martin B L, Martin GK. A review of otoacoustic emissions. J Acoust Soc Am 1991; 89: 2027–2067
  • Bonfils P, François M, Avan P, Londero A, Trotoux J, Narcy P. Spontaneous and evoked otoacoustic emissions in preterm neonates. Laryngoscope 1992; 102: 182–186
  • Probst R, Coats A C, Martin G K, Lonsburgy-Martin BL. Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 1987; 21: 261–275
  • Norton S J, Neely ST. Tone-burst-evoked otoacoustic emissions from normal-hearing subjects. J Acoust Soc Am 1987; 81: 1860–1872
  • Sutton G J, Wilson JP. Modelling cochlear echoes: the influence of irregularities in frequency mapping on summed cochlear activity. Mechanisms of Hearing, E De Boer, MA Viergever. Delft Univ Press, Delft 1983; 83–90
  • Kemp DT. Otoacoustic emissions travelling waves and cochlear mechanics. Hear Res 1986; 22: 95–104
  • Strube HW. Evoked otoacoustic emissions as cochlear Bragg reflections. Hear Res 1989; 38: 35–46
  • Zwicker E. Otoacoustic emissions in a nonlinear cochlea hardware model with feedback. J Acoust Soc Am 1986; 80: 154–162
  • Zwicker E. Otoacoustic emissions and cochlcar travelling waves. Cochlear Mechanics, Structures, Functions and Models, J P Wilson, DT Kemp. Plenum Press, New York 1989; 359–366
  • Guinan JJ, Jr. Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. Mechanics and Biophysics of Hearing, P Dallos, C D Geisler, J W Matthews, CR Steele. Springer, Berlin 1990; 170–177
  • Avan P, Bonfils P, Loth D, Trotoux J, Narcy P. Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 1991; 52: 99–112
  • Avan P, Loth D, Menguy C, Teyssou M. Frequency dependence of changes in guinea-pig cochlear emissions after acoustic overstimulation. J Acoust 1991; 4: 91–94
  • Avan P, Bonfils P, Loth D, Teyssou M, Menguy C. Exploration of cochlear function by otoacoustic emissions: relationship to pure-tone audiometry. Prog Brain Res, in press
  • Harris F P, Probst R, Schmuziger N. Influence of audiometric contour on the spectrum of transiently evoked otoacoustic emissions in ears with Menière's disease. Abstr Assoc Res Otolaryngol 1991; 67
  • Harris F P, Lonsbury-Martin B L, Stagner B B, Coats A C, Martin GK. Acoustic distortion products in humans: Systematic changes in amplitude as a function of f2/f1 ratio. J Acoust Soc Am 1989; 85: 220–229
  • Leonard G, Smurzynski J, Jung M D, Kim DO. Evaluation of distortion product otoacoustic emissions as a basis for the objective clinical assessment of cochlear function. Cochlear Mechanisms and Otoacoustic Emissions. Adv Audiol, F Grandori, G Cianfrone, DT Kemp. Karger, Basel 1990; Vol 7: 139–148
  • Kimberley B P, Nelson DA. Distortion product emissions and sensorineural hearing loss. J Otolaryngol 1989; 18: 365–369
  • Bonfils P, Avan P, Londero A, Trotoux J, Narcy P. Les produits de distorsion acoustique: technique, reproductibilité, intérět audiomětrique. Ann Otolaryngol (Paris) 1990; 107: 224–230
  • Bonfils P, Avan P, Londero A, Trotoux J, Narcy P. Objective low-frequency audiometry by distortion-product acoustic emissions. Arch Otolaryngol Head Neck Surg 1991; 117: 1167–1171
  • Martin G K, Ohlms L A, Franklin D J, Harris F P, Lonsbury-Martin BL. Distortion-product emissions in humans. III Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol 1990; 30–42, (Suppl 147)
  • Probst R, Hauser R. Distortion product otoacoustic emissions in normal and hearing impaired ears. Am J Otolaryngol 1990; 11: 236–243
  • Smurzynski J, Leonard G, Kim D O, Lafreniere D, Jung MD. Distortion product otoacoustic emissions in normal and impaired adult ears. Arch Otolaryngol Head Neck Surg 1990; 116: 1309–1316
  • Gaskill S A, Brown AM. The behaviour of the acoustic distortion product, 2 f1-f2, from the human ear and its relation to auditory sensitivity. J Acoust Soc Am 1990; 88: 821–839
  • Schmiedt RA. Acoustic distortion products in the ear canal. I: cubic difference tones: Effects of acute noise injury. J Acoust Soc Am 1986; 79: 1481–1490
  • Martin G K, Lonsbury-Martin B L, Probst R, Coats AC. Acoustic distortion products in rabbit ear canal: II. Sites of origin revealed by suppression contours and pure-tone exposures. Hear Res 1987; 28: 191–208
  • Brown A M, McDowell B, Forge A. Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res 1989; 42: 143–156
  • Brown A M, Kemp DT. Suppressibility of the 2f1-f2 stimulated acoustic emissions in gerbil and man. Hear Res 1984; 13: 29–37
  • Fahey P F, Allen JB. Nonlinear phenomena as observed in the ear canal and at the auditory nerve. J Acoust Soc Am 1985; 77: 599–612
  • Montgomery D, Peck E. Introduction to Linear Regression Analysis. Wiley, New York 1982; 275
  • Khanna S M, Leonard D. Basilar membrane tuning in the cat cochlea. Science 1982; 215: 305–306
  • Kim D O, Molnar C E, Matthews JW. Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve fiber responses and in ear-canal sound pressure. J Acoust Soc Am 1980; 67: 1704–1721
  • De Boer E. Power amplification in an active model of the cochlea. Short-wave case. J Acoust Soc Am 1983; 73: 577–579
  • Siegel J H, Kim D O, Molnar CE. Effects of altering organ of Corti on acoustic distortion products f2-f1 and 2f1-f2. J Neurophysiol 1982; 47: 303–328
  • Lonsbury-Martin B L, Harris F P, Stagner B B, Hawkins M D, Martin GK. Distortion-product emissions in humans. I Basic properties in normally hearing subjects. Ann Otorhinolaryngol 1990; 3–14, (Suppl 147)
  • Harris FP. Distortion-product otoacoustic emissions in humans with high frequency sensorineural hearing loss. J Speech Hear Res 1990; 33: 594–600
  • Bonfils P, Avan P. Distortion-product otoacoustic emissions, parameters for clinical use. Arch Otolaryngol Head Neck Surg, in press
  • Whitehead M L, Martin G K, Lonsbury-Martin BL. Effects of the crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits. Hear Res 1991; 51: 55–72
  • Bonfils P, Bertrand Y, Uziel A. Evoked otoacoustic emissions: normative data and presbyacusis. Audiology 1988; 27: 27–35
  • Lonsbury-Martin B L, Cutler W M, Martin GK. Evidence for the influence of aging on distortion-product otoacoustic emissions in humans. J Acoust Soc Am 1991; 89: 1749–1759
  • Collet L, Gartner M, Moulin A, Kauffmann I, Disant F, Morgon A. Evoked otoacoustic emissions and sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 1989; 115: 1060–1062
  • Hamernik R P, Patterson J H, Turrentine G A, Ahroon WA. The quantitative relation hetween sensory hair cell loss and hearing thresholds. Hear Res 1989; 38: 199–212
  • Rubel E W, Norton SJ. Vulnerability of otoacoustic emissions as a function of stimulus level. Abstr Assoc Res Otolaryngol 1991; 84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.