14
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Effects of Click Polarity on Brainstem Auditory-Evoked Potentials in Cochlear Hearing Loss: A Working Hypothesis

&
Pages 17-35 | Received 21 Jul 1994, Accepted 16 Feb 1995, Published online: 07 Jul 2009

References

  • Schwartz D M, Morris M D, Spydell J D, Ten Brink C, Grim M A, Schwartz J A. Influence of click polarity on the brain-stem auditory evoked response (BAER) revisited. Electroencephalogr Clin Neurophy-siol 1990; 77: 445–457
  • Burkard R, Voigt H F. Stimulus dependencies of the gerbil brain-stem-auditory-evoked-response (BAER). I. Effects of click level rate and polarity. J Acoust Soc Am 1989; 85: 2514–2525
  • Gorga M P, Thornton A R. The choice of stimuli for ABR measurements. Ear Hear 1989; 10: 217–230
  • Fowler C G. Effects of stimulus phase on the normal auditory brainstem response. J Speech Hear Res 1992; 35: 162–174
  • Schoonhoven R. Dependence of auditory brainstem response on click polarity and high-frequency sensorineural hearing loss. Audiology 1992; 31: 72–86
  • Coats A C, Martin J L, Kidder K R. Normal short-latency electrophysiological filtered click responses recorded from vertex and external auditory meatus. J Acoust Soc Am 1979; 65: 747–758
  • Salt A N, Thornton A RD. The effects of stimulus rise-time and polarity on the auditory brainstem responses. Scand Audiol 1984; 13: 119–127
  • Fowler C G, Swanson M R. Validation of addition and subtraction of ABR waveforms. Scand Audiol 1988; 17: 195–199
  • Borg E, Lofqvist L. Auditory brainstem response (ABR) to rarefaction and condensation clicks in normal and abnormal ears. Scand Audiol 1982; 11: 227–235
  • Deltenre P, Mansbach A L. A new descriptor of the dual character of the input-output behaviour of the cochlea with implications for signal-to-noise ratio estimation of brainstem auditory potentials evoked by alternating polarity clicks. Electroencephalogr Clin Neu-rophysiol 1993; 88: 377–388
  • Versnel H, Schoonhoven R, Prijs V F. Single-fibre and whole-nerve responses to clicks as a function of sound intensity in the guinea pig. Hear Res 1992; 59: 138–156
  • Davis H. The second cochlear filter is real but how does it work . Am J Otolaryngol 1981; 2: 153–158
  • Davis H. An active process in cochlear mechanics. Hear Res 1983; 9: 79–90
  • Zwicker E. A model describing non-linearities in hearing by active processes with saturation at 40 dB. Biol Cybernet 1979; 35: 243–250
  • Pujol R. Anatomie et physiologie de la cochlee. Arch Int Physiol Biochim 1989; 97: A51–A78
  • Neely S T. A model of cochlear mechanics with outer hair cell motility. J Acoust Soc Am 1993; 94: 137–146
  • Don M, Eggermont J J. Analysis of the click-evoked brainstem potentials in man using high-pass noise masking. J Acoust Soc Am 1978; 63: 1084–1092
  • Coats A C, Martin J L. Human auditory nerve action potentials and brain stem evoked responses. Effects of audiogram shape and lesion location. Arch Otolaryngol 1977; 103: 605–622
  • Pettigrew A M, Liberman M C, Kiang N YS. Click-evoked gross potentials and single-unit thresholds in acoustically traumatized cats. Ann Otol Rhinol Laryngol 1984; 93(suppl 112)83–96
  • Gorga M P, Worthington D W, Rei-land J K, Beauchaine K A, Glodgar D E. Some comparisons between auditory brain stem response thresholds latencies and the pure-tone audiogram. Ear Hear 1985; 6: 105–112
  • Van der Drift J FC, Brocaar M P, Van Zanten G A. The relation between the pure-tone audiogram and the click auditory brainstem response threshold in cochlear hearing loss. Audiology 1987; 26: 1–10
  • Dallos P. Cochlear neurobiology: Some key experiments and concepts of the past two decades;. Auditory Function: Neurobiological Bases of Hearing, G M Edelman, W E Gall, WM Cowan. Wiley and Sons, New York 1988; 153–188
  • Kiang N YS, Liberman M C, Sewell W F, Guinan J J. Single-unit clues to cochlear mechanisms. Hear Res 1986; 22: 171–182
  • Liberman M C, Kiang N YS. Acoustic trauma in cats: Cochlear pathology and auditory-nerve activity. Acta Otolaryngol (Stockh) 1978; 1–63, suppl 358
  • Kiang N YS, Watanabe T, Thomas E C, Clark L F. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve. MIT Press, Cambridge 1965, Res Monogr 35
  • Weber B A, Seitz M R, McCutcheon M J. Quantifying click stimuli in auditory brainstem response audiometry. Ear Hear 1981; 2: 15–19
  • Burkard R, Hecox K. The effect of broadband noise on the human brainstem auditory evoked response. I. Rate and intensity effects. J Acoust Soc Am 1983; 74: 1204–1213
  • Yoshie N. Electrocochleographic classification of sensorineural defects: Pathological patterns of the cochlear nerve compound action potential in man;. Electro-cochleography, R Ruben, C Elber-ling, G Salomon. University Park Press, Baltimore 1976; 353–386
  • Hall J W. Handbook of Auditory Evoked Responses. Allyn and Bacon, Needham Heights 1992
  • Picton T W, Stappels D R, Campbell K B. Auditory evoked potentials from the human cochlea and brainstem. J Otolaryngol 1981; 1–41, (suppl 9)
  • Yantis P A. Puretone air-conduction testing;. Handbook of Clinical Audiology, J Katz. Williams and Wilkins, Baltimore 1985; 143–169
  • Coats A V. Human auditory nerve action potentials and brain stem evoked responses. Arch Otolaryngol 1978; 104: 709–717
  • Eggermont J J. On the rate of maturation of sensory evoked potentials. Electroencephalogr Clin Neurophy-siol 1988; 70: 293–305
  • Elberling C. Transitions in cochlear action potentials recorded from the ear canal in man. Scand Audiol 1973; 2: 151–159
  • Eggermont J J, Odenthal D W, Schmidt P H, Spoor A. Electrococh-leography: Basic principles and clinical application. Acta Otolaryngol (Stockh) 1974; 1–84, suppl 316
  • Aran J M, Pelerin J, Lenoir J, Port-mann C, Darrouzet J. Aspects theo-riques et pratiques des enregistre-ments electrocochleographiques se-lon la methode etablie a Bordeaux. Rev Laryngol 1971; 92(suppl)601–644
  • Kiang N YS, Moxon E C. Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 1972; 81: 714–730
  • Liberman M C, Kiang N YS. Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate and phase level functions. Hear Res 1984; 16: 75–90
  • Versnel H, Prijs V F, Schoonhoven R. Single-fibre responses to clicks in relationship to the compound action potential in the guinea-pig. Hear Res 1990; 46: 147–160
  • Palmer A R, Russell I J. Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 1986; 24: 1–15
  • Javel E, Mott J B. Physiological and psychophysical correlates of temporal processes in hearing. Hear Res 1988; 34: 275–294
  • Moushegian R, Rupert L, Stillman R D. Scalp-recorded early response in man to frequencies in the speech range. Electroencephalogr Clin Neu-rophysiol 1973; 35: 665–667
  • Hoorman J, Falkenstein M, Hohns-bein J, Blanke L. The human frequency-following-response (FFR): Normal variability and relation to the click-evoked brainstem response. Hear Res 1992; 59: 179–188
  • Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 1978; 41: 365–383
  • Eggermont J J, Don M. Analysis of the click-evoked brainstem potentials in humans using high-pass noise masking. I. Effects of click intensity. J Acoust Soc Am 1980; 68: 1671–1675
  • Eggermont J J. Narrow-band AP latencies in normal and recruiting human ears. J Acoust Soc Am 1979; 65: 463–470
  • Harrison R V, Evans E F. Reverse correlation study of cochlear filtering in normal and pathological guinea-pigs ears. Hear Res 1982; 6: 303–314
  • Salvi R J, Hamemik R P, Henderson D. Response patterns of auditory nerve fibers during temporary threshold shift. Hear Res 1983; 10: 37–67
  • Hecox K E, Patterson J, Birman M. Effects of broadband noise on the human brain stem auditory evoked response. Ear Hear 1989; 10: 346–353
  • Aran J M, Portmann C, Delaunoy J, Pelerin J, Lenoir J. L'electro-co-chleogramme methodes et premiers resultats chez l'enfant. Rev Laryngol (Bordeaux) 1969; 90: 615–634
  • Wang C Y, Dallos P. Latency of whole-nerve action potentials: Influence of hair cell normalcy. J Acoust Soc Am 1972; 52: 1678–1686
  • Versnel H, Prijs V F, Schoonhoven R. Round-window recorded potential of single-fibre discharge (unit response) in normal and noise-damaged cochleas. Hear Res 1992; 59: 157–170
  • Plomp R. Auditory handicap of hearing impairment and the limited benefit of hearing aids. J Acoust Soc Am 1978; 63: 533–549
  • Tyler R S, Summerfield Q, Wood E J, Fernandes M A. Psychoacoustic and phonetic temporal processing in normal and hearing-impaired listeners. J Acoust Soc Am 1982; 72: 740–751
  • Liberman M C, Dodds L W. Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 1984; 16: 55–74
  • Evans E F. Peripheral auditory processing in normal and abnormal ears: Physiological considerations for attempts to compensate for auditory deficits by acoustic and electrical prostheses. Scand Audiol 1978; 9–47, suppl 6
  • Thornton A R, Abbas P J. Low-frequency hearing loss: Perception of filtered speech psychophysical tuning curves and masking. J Acoust Soc Am 1980; 67: 638–643

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.