20
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Separate and Combined Effects of a Benzodiazepine (Alprazolam) and Noise on Auditory Brainstem Responses in Man

, , , &
Pages 312-320 | Received 12 Jun 1998, Accepted 19 Feb 1999, Published online: 07 Jul 2009

References

  • Schwender D, Klasing S, Madle C, Pöppel E, Peter K. Effects of benzodiazepine on mid-latency auditory evoked potentials. Can J Anaesth 1993; 40: 1148–54
  • Ebe M, Meier-Ewert K H, Broughton R. Effects of intravenous diazepam (valium) upon evoked potentials of photosensitive epileptic and normal subjects. EEG Clin Neurophysiol 1969; 27: 429–35
  • Holder G E, Jones I A, Harding G F. Proceedings: a quantitative investigation into the effects of carbamazepine, diazepam and quinalbarbitone on the EEG and visual evoked potential in man. EEG Clin Neurophysiol 1975; 39: 430
  • Loughnan B L, Sebel P S, Thomas D, Rutherfoord C F, Rogers H. Evoked potentials following diazepam or fentanyl. Anaesthesia 1987; 42: 195–8
  • Sherwin I. Differential action of diazepam on evoked cerebral responses. EEG Clin Neurophysiol 1971; 30: 445–52
  • Grundy B L. lntraoperation monitoring of sensory-evoked potentials. Anesthesiology 1983; 58: 72–87
  • Sebel P S. Somatosensory, visual and motor evoked potentials in anaesthetized patients. Clinical Anesthesiology, J G Jones. Baillierc Tindall, London 1989; 587–602
  • Sloan T B, Fugina M L, Toleikis J R. Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth 1990; 64: 590–3
  • Cattell R B. Manuel de ľéchelle ďanxiété de Cattell. Centre de Psychologie Appliquée, Paris 1962
  • Trevor A J, Way W L. Sedative-hypnotic drugs. Basic and Clinical Pharmacology, B G Katzung, 1998; 354–71, Stamford; Appleton & Lange
  • Petiot J C, Parrot J. Effects of the ovarian and contraceptive cycles on absolute thresholds, auditory fatigue and recovery from temporary thresholds shifts at 4 and 6 kHz. Audiology 1984; 23: 581–98
  • Jewet D L. Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephal Clin Neuro-physiol 1970; 28: 609–18
  • Kirk R E. Experimental Design: Procedures for the Behavioral Sciences. Brooks-Cole Publishing (Division of Wadsworth Publishing Co.), Belmont 1987; 1–577
  • Xanax. Alprazolam Dossier technique. Paris (undated)., Laboratoires Upjohn
  • Forman L J, Estolow-Isabell S, Harwell M, De Salvo D, Cater J. Possible opiates action in the anxiolytic and antinociceptive actions of alprazolam. Res Comm Chem Pathol Pharmacol 1991; 71: 259–71
  • Uziel A. Les potentiels évoqués du nerf auditif et du tronc cérébral. Monographies Chauvin-Blache No. 7, Paris, 1979
  • Don M, Eggermon J J. Analysis of click-evoked brainstem potentials in Man using high-pass noise masking. J Acoust Soc Am 1978; 63: 1084–92
  • McCabe R T, Wamsley J K. Autoradiographic localization of subcomponents of the macro-molecular GABA receptor complex. Life Sci 1986; 39: 1937–45
  • Haefely W, Pieri L, Pole P, Schaffner R. General pharmacology and neuropharmacology of benzodiazepine derivatives. Handbook of Experimental Pharmacology, No. 55, Part 2, Psychotropic Agents, Stille Hoffmeister. Springer Verlag, Berlin 1981; 13–262
  • Laurent J P. Lcaron;acide Gamma-aminobutyrique. Confrontations Psychiatriques 1983; 22: 97–154
  • Lüddens H, Korpi E R. Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiatr Res 1995; 29: 77–94
  • Fex J, Altschuler R A, Kachar B, Wenthold R J, Zempel J M. GABA visualized by immuno-cytochemistry in the Guinea-pig cochlea in axons and endings of efferent neurons. Brain Res 1986; 366: 106–17
  • Eybalin M, Parnaud C, Geffard M, Pujol R. lmmunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti. Neuroscience 1988; 24: 29–38
  • Pujol R, Lenoir M. The four types of synapses in the organ of Corti. Neurobiology of Hearing: the Cochlea, R A Altschuler, R P Bobbin, D W Hoffman. Raven Press, New York 1986; 161–72
  • Eybalin M, Pujol R. Cochlear neuroactive substance. Arch Oto-Rhino-Laryngol 1989; 246: 228–34
  • Eybalin M, Altschuler R A. Immunoelectron microscopic localization of neurotransmitters in the cochlea. J Electron Microsc Tech. 1990; 15: 209–24
  • Pujol R. Neuropharmacology of the cochlea and tinnitus. Proceedings of the Fourth International Tinnnitus Seminar, Bordeaux, France, J M Aran, R Dauman. Kugler, Amsterdam and New York 1992; 103–7
  • Altschuler R A, Kachar B, Rubio J A, Parakkal M H, Fex J. Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea. Brain Res 1985; 338: 1–11
  • Liberman M C. Efferent synapses in the inner hair cell area of the cat cochlea: an electron-microscopic study of serial sections. Hear Res 1980; 3: 189–204
  • Pujol R, Puel J L, Eybalin M. Implication of non NMDA and NMDA receptors in cochlear ischemia. Neurol Rep 1992; 3: 299–302
  • Ashmore J L. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 1987; 388: 323–47
  • Mountain D C. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanisms. Science 1980; 210: 71–2
  • Wiederhold M L. Physiology of the olivocochlear system. Neurobiology of Hearing: the Cochlea, R A Altschuler, R P Bobbin, D W Hoffman. Raven Press, New York 1986; 349
  • Bobbin R P, Fallon M, Puel J L, Bryant G, Bledsoe S C, Zajic G, Schacht J. Acetylcholine, carbachol and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 1990; 47: 39–52
  • Caspary D M, Havey D C, Faingold C L. Effects of microiontophoretically applied glycine and GABA on neuronal response pattern in the cochlear nuclei. Brain Res 1979; 172: 179–85
  • Vetter D E, Adams J C, Mirgnaini E. A dual efferent GABAergic projection to the rat cochlea. Soc Neurosc Abstr 1986; 12: 779
  • Parnaud C, Eybalin M, Geffard M, Pujol R. Light and electron microscopic localization of GABA-immunostaining in efferent fibers of the organ of Corti. Neurosci Lett Suppl 1986; 26, S284
  • Thompson G C, Cortez A M, Lam D MK. Localization of GABA immunoreactivity in the auditory brainstem of guinea-pigs. Brain Res 1985; 339: 119–22
  • Guisti P, Arban R. Physiological and pharmacological bases for the diverse properties of benzodiazepines and their congeners. Pharmacol Res 1993; 27: 201–15
  • Shekhar A. GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. 1. Behavioral measures. Brain Res 1993; 627: 9–16
  • Drugan R C, Holmes P V. Central and peripheral benzodiazepine receptors: involvement in an organism's response to physical and psychological stress. Neurosci Behav Rev 1991; 15: 277–98
  • Breschi M C, Martini C, Scatizzi R, Cristofani R, Giannaccini G, Martinotti E, Lucacchini A. Benzodiazepine agonists reverse the effects of noise exposure on central benzodiazepine receptors and cardiac responsiveness. Life Sci 1995; 57: 1131–40
  • Trevor A J, Miller R D. General anesthesics. Basic and Clinical Pharmacology, B G Katzung. Appleton & Lange, Stamford 1998; 409–24
  • Whitehead R W, Virtne R W. General anesthesia III: Intravenous agents. Drill's Pharmacology in Medicine, J R Di Palma. McGraw-Hill, New York, New York 1965; 124–32
  • Guérit J M. Les Potentiels évoqués. Masson, Paris 1991; 1–347
  • Olson K R, Becker C E. Management of the poisoned patient. Basic and Clinical Pharmacology, B G Katzung. Appleton & Lange, Stamford 1998; 968
  • Puel J L, Safieddine S, Daldin G C, Eybalin M, Pujol R. Excitotoxicity and plasticity of the IHC-auditory nerve synapse contribute to both TTS and PTS. Scientific Basis of Noise-induced Hearing Loss, A Axelsson, H Borchgrevink, R P Hamernik, P A Hellstrom, D Henderson, R J Salvi. Thieme., New York 1996; 36–42
  • Puel J L, Pujol R, Tribillac S, Ladrech S, Eybalin M. Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. J Comp Neurol 1994; 341: 241–56
  • Pujol R, Puel J L, Gervais dAldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 1993; 113: 330–4
  • Henry W R, Mulroy M J. Afferent synaptic changes in auditory hair-cells during noise-induced temporary threshold shift. Hear Res 1995; 84: 81–90
  • Conraux C. Réponse. 1983, s électrophysiologiques du système auditif aux bruits impulsifs et fatigue auditive. Rapport de recherche sur contrat, Ministère de ľEnvironnement
  • Parrot J, Petiot J C, Smolik H J, Petiot M T, Lobreau J P. Effets de bruits modérés sur les potentiels évoqués auditifs précoces, en fonction de ľaˇge. CR Acad Sci Paris 1994; 317: 505–10
  • Attias J, Pratt H. Follow-up of auditory-evoked potentials and temporary threshold shift in subjects developing noise-induced permanent hearing loss. Audiology 1986; 25: 116–23
  • Petiot J C, Parrot J, Lobreau J P, Smolik H J. Cardiovascular effects of impulse noise, road traffic noise and intermittent pink noise at LAeq = 75 dB, as a function of sex, age and level of anxiety. A comparative study. II. Digital pulse level and blood pressure data, Int Arch Occup Env Health 1992; 63: 485–93
  • Parrot J, Petiot J C, Lobreau J P, Smolik H J. Cardiovascular effects of impulse noise, road traffic noise and intermittent pink noise at LAeq –75 dB, as a function of sex, age and level of anxiety. A comparative study. I. Heart rate data. Int Arch Occup Env Health 1992; 63: 477–84
  • Spreng F. Psychological and psychophysical scalings of annoyance compared with physiological measurements in Manninen: recent advances in researches on the combined effects of environmental factors. Tampere, PK Paino oy printing 1988; 317–32
  • Unseld E, Fisher C, Rothemund E, Klotz U. Occurrence of ‘natural’ diazepam in human brain. Biochem Pharmacol 1990; 39: 210–12
  • Rothstein J D, Garland W, Puia G, Guidotti A, Weber R J, Costa E. Purification and characterization of naturally occurring benzodiazepine receptor ligands in rat and human brain. J Neurochem 1992; 58: 2102–15
  • Pole P. Involvement of endogenous benzodiazepine receptor ligands in brain disorders: therapeutic potential for benzodiazepine antagonists?. Med Hypotheses 1995; 44: 439–46
  • Pelissolo A. The benzodiazepine receptor: the enigma of the endogenous ligand. Encephale 1995; 21: 133–40
  • Gil-Loyzaga P, Fernandez-Mateos P, Vicente-Torres M A. Effect of noise stimulation on cochlear dopamine metabolism. Brain Res 1991; 623: 177–80
  • Drescher M J, Drescher D G, Medina E. Effects of sound stimulation at several levels on concentrations of primary amines including neurotransmitter candidates. J Neurochem 1983; 41: 309–20
  • Starr A. Suppression of single neuron activity in the cochlear nucleus of the cat following sound stimulation. J Neurol 1965; 26: 416–31
  • Salvi R, Henderson D, Hamernick R. Auditory fatigue: retrocochlear components. Science 1975; 190: 486–7
  • Morest D K, Bohne B A. Noise-induced degeneration in the brain and representation of inner and outer hair cells. Hear Res 1983; 9: 145–51
  • Dehan C P, Jerger J. Analysis of gender differences in the auditory brainstem response. Laryngoscope 1990; 100: 18–24
  • Petiot J C, Parrot J, Smolik H J, Petiot M T, Lobreau J P. Niveau ďanxiété et effets de bruits modérés sur les potentiels évoqués auditifs précoces. CR Acad Sci Paris 1994; 317: 615–20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.