136
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Norepinephrine Plays an Important Role in Antinociceptive Modulation of Hypothalamic Paraventricular Nucleus in the Rat

, , , , , , , , , , & show all
Pages 428-438 | Received 08 Dec 2006, Published online: 26 May 2010

REFERENCES

  • Antunes, J. L., & Zimmerman, E. A. (1978). The hypothalamic magnocellular system of the rhesus monkey: An immunocytochemical study. The Journal of Comparative Neurology, 181, 539–565.
  • Blair, M. L., Piekut, D., Want, A., & Olschowka, J. A. (1996). Role of the hypothalamic paraventricular nucleus in cardiovascular regulation. Clinical and Experimental Pharmacology & Physiology, 23, 161–165.
  • Carlsson, A., Falck, B., & Hillarp, N. A. (1962). Cellar localization of brain monoamines. Acta Physiologica Scandinavica, 56, 1–27.
  • Chen, Y., Wang, Y., & Yin, Q. (1991). The role of paraventricular nucleus of hypothalamus in acupuncture analgesia in rats. Acupuncture & Electro-therapeutics Research, 16, 32–38.
  • Ciriello, J., Kline, R. L., Zhang, T. X., & Caverson, M. M. (1984). Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Research, 310, 355–359.
  • Clarke, G., Forrester, P. A., & Stranghan, D. W. (1974). A quantitative analysis of excitation of single cortical neurons by acetylcholine and L-glutamate acid applied micro-inotophoretically. Neuropharmacology, 13, 1047–1055.
  • De Vries, G. J., & Buijus, R. M. (1983). The origin of the vasopressineric and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Research, 273, 307–317.
  • Eva, C., Hadjiconstantinou, M., Neff, N. H., & Meek, J. L. (1984). Acetycholine measurement by high-performance liquid chromatography using an enzyme-loaded postcolumn reactor. Analytical Biochemistry, 143, 320–324.
  • Fuxe, K., & Hokfelt, T. (1967). The influence of central catecholamine neurons on the hormone secretion from the anterior and posterior pituitary. In F. Stutinsky (ed.), Neurosecretion. Berlin: Springer-Verlag, 164–177.
  • Hattori, T., Sundberg, D. K., & Morris, M. (1992). Central and systemic oxytocin release: A study of the paraventricular nucleus by in vivo microdialysis. Brain Research Bulletin, 28, 257–263.
  • Hokfelt, T., Fuxe, K., Goldstein, M., & Jonhansson, O. (1974). Immunohistochemistrical evidence for the existence of adrenaline neurons in the rat brain. Brain Research, 66, 235–252.
  • Kiss, J. Z. (1988). Dynamism of chemoarchitecture in the hypothalamic paraventricular nucleus. Brain Research Bulletin, 20, 699–708.
  • Kontur, P., Dawson, R., & Monjan, A. (1984). Manipulation of mobile phase paramenters for the HPLC separation of endogenous monoamines in rat brain tissue. Journal of Neuroscience Methods, 11, 5–18.
  • Leibowitz, S. F., Weiss, G. F., & Suh, J. S. (1990). Medial hypothalamic nuclei mediate serotonin's inhibitory effect on feeding behavior. Pharmacology, Biochemistry, and Behavior, 37, 735–742.
  • Lightman, S. L. (1988). The neuroendocrine paraventricular hypothalamus: Receptors, signal transduction, mRNA and neurosecretion. The Journal of Experimental Biology, 139, 31–49.
  • McEwen, B. B. (2004). Part I: General introduction to vasopressin and oxytocin: Structure/metabolism, evolutionary aspects, neural pathway/receptor distribution, and functional aspects relevant to memory processing. In B. B. McEwen (ed.), The Roles of Vasopressin and Oxytocin in Memory Processing, Vol. 50. Amsterdam: Elsevier Science, 1–50.
  • Meek, J. L., & Eva, C. (1984). Enzymes adsorbed on an ion exchanger as a post-column reactor: Application to acetylcholine measurement. Journal of Chromatography, 28, 343–347.
  • Morgane, P. J., & Panksepp, J. (1979). Handbook of the Hypothalamus, Vol. 1. New York: Marcel Dekkep.
  • Myers, R. D., Rezvani, A. H., & Gurley-Orkin, L. A. (1985). New double-lumen polyethylene cannula for push-pull perfusion of brain tissue in vivo. Journal of Neuroscience Methods, 12, 205–218.
  • Pellegrino, L. J., Pellegrino, A. S., & Cushman, A. J. (1979). A stereotaxic atlas of rat brain. New York: Pleaum Press.
  • Pickard, G. F., & Turek, F. W. (1983). The hypothalamic paraventricular nucleus mediates the photoperiodic control of reproduction but not the effect of light on the circadian rhythm of activity. Neuroscience Letters, 43, 67–72.
  • Ramirez, V. D., Chen, J. C., Nduka, E., Lin, W., & Ramirez, A. D. (1986). Push-pull perfusion of the hypothalamus and the caudate nucleus in conscious, unrestrained animals. Annals of the New York Academy of Sciences, 473, 434–448.
  • Robinson, M. B. (2006). Acute regulation of sodium-dependent glutamate transporters: A focus on constitutive and regulated trafficking. Handbook of Experimental Pharmacology, 175, 251–275.
  • Sawchenko, P. E., Arias, C., & Bittencourt, J. C. (1990). Inhibin β, somatostatin, and enkephalin immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. The Journal of Comparative Neurology, 291, 269–280.
  • Shiraishi, T., Onoe, M., Kojima, T., Sameshima, Y., & Kageyama, T. (1995). Effects of hypothalamic paraventricular nucleus: Electrical stimulation produce marked analgesia in rats. Neurobilogy (Bp), 3, 393–403.
  • Swanson, L. W., & Sawchenko, P. E. (1980). Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Research, 198, 190–195.
  • Swanson, L. W., Sawchenko, P. E., Berod, A., Hartman, B. K., Helle, K., & Vanorden, D. E. (1981). An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. The Journal of Comparative Neurology, 196, 271–285.
  • Taylor, T., Gesundheit, N., Gyves, P. W., Jacobowitz, D. M., & Weintraub, B. D. (1988). Hypothalamic hypothyroidism caused by lesions in rat paraventricular nuclei alters the carbohydrate structure of secreted thyrotropin. Endocrinology, 122, 283–290.
  • Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathway in the rat brain. Acta Physiologica Scandinavica, 367, 1–48.
  • Vandesande, F., & Dierickx, K. (1975). Indentification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic neurosecretory system of the rat. Cell and Tissue Research, 164, 153–162.
  • Vogt, M. (1954). The concentration of sympathin in different parts of the central neurons system under normal conditions and after the ministration of drugs. The Journal of Physiology (London), 123, 451–481.
  • Weng, N. Q. (1988). Pain and Analgesia. Shanghai: Shanghai Science Press.
  • Yang, J. (1990). Study for a push-pull perfusion system for brain nuclei of unrestrained rat. Lab. Anim. and Anim. Exp., 2, 39–40.
  • Yang, J. (1994). Intrathecal administration of oxytocin induces analgesia in low back pain involving the endogenous opiate peptide system. Spine, 19, 867–871.
  • Yang, J., Chen, J. M., Liu, W. Y., Song, C. Y., Wang, C. H., & Lin, B. C. (2006a). Effect of arginine vasopressin in the nucleus raphe magnus on antinociception in the rat. Peptides, 27, 2224–2229.
  • Yang, J., Chen, J. M., Liu, W. Y., Song, C. Y., Wang, C. H., & Lin, B. C. (2006b). Arginine vasopressin in the caudate nucleus plays an antinociceptive role in the rat. Life Sciences, 77, 2086–2090.
  • Yang, J., Chen, J. M., Liu, W. Y., Song, C. Y., Wang, C. H., & Lin, B. C. (2006c). Through V2, not V1 receptor relating to endogenous opiate peptides, arginine vasopressin in periaqueductal gray regulates antinociception in the rat. Regulatory Peptides, 137, 156–161.
  • Yang, J., Chen, J. M., Liu, W. Y., Song, C. Y., Wang, C. H., & Lin, B. C. (2006d). Effect of arginine vasopressin in the nucleus raphe magnus on antinociception in the rat. Peptides, 27, 2224–2229.
  • Yang, J., & Lin, B. C. (1992). Hypothalamic paraventricular nucleus plays a role in acupuncture analgesia through the central nervous system in the rat. Acupuncture & Electro-therapeutics Research, 17, 209–220.
  • Yang, J., Liu, W. Y., Song, C. Y., & Lin, B. C. (2006e). Only arginine vasopressin, not oxytocin and endogenous opiate peptides, in hypothalamic paraventricular nucleus play a role in acupuncture analgesia in the rat. Brain Research Bulletin, 68, 453–458.
  • Yang, J., Liu, W. Y., Song, C. Y., & Lin, B. C. (2006f). Through central arginine vasopressin, not oxytocin and endogenous opiate peptides, glutamate sodium induces hypothalamic paraventricular nucleus enhancing acupuncture analgesia in the rat. Neuroscience Research, 54, 49–56.
  • Yang, J., Song, C. Y., Lin, B. C., Wang, C. H., Liu, W. Y., & Zhu, H. N. (1989). Hypothalamic paraventricular nucleus plays an important role in electro-acupuncture analgesia. Acupuncture & Electro-therapeutics Research, 14, 111–112.
  • Yang, J., Song, C. Y., Lin, B. C., & Zhu, H. N. (1992a). Effect of paraventriculat nucleus of hypothalamus on pain regulation in rats. Acad. J. Sec. Mil. Med. Univ., 13, 120–124.
  • Yang, J., Song, C. Y., Lin, B. C., & Zhu, H. N. (1992b). Effects of stimulation and cauterization of hypothalamic paraventricular nucleus on acupuncture analgesia. Acta Physiologica Sinica, 44, 455–460.
  • Yang, J., Song, C. Y., Liu, W. Y., Song, C., & Lin, B. C. (2006g). Only through the brain nuclei, arginine vasopressin regulates antinociception in the rat. Peptides, 27, 3341–3346.
  • Yang, J., Song, C. Y., Liu, W. Y., Wang, W., & Lin, B. C. (2006h). Through the central V2, not V1 receptors influencing the endogenous opiate peptide system, arginine vasopressin, not oxytocin in the hypothalamic paraventricular nucleus involves in the antinociception in the rat. Brain Research, 1069, 127–138.
  • Yang, J., Yang, Y., Chen, J. M., Gen, W., Xu, H. T., Liu, W. Y., (2006i). Periaqueductal gray knockdown of V2, not V1a and V1b receptor influences nociception in the rat. Neuroscience Research, 54, 49–56.
  • Yang, J., Yang, Y., Chen, J. M., Xu, H. T., Liu, W. Y., & Lin, B. C. (2007). Arginine vasopressin in periaqueductal gray, which relates to antinociception, comes from hypothalamic paraventricular nucleus in the rat. Neuroscience Letters, 412, 154–158.
  • Yang, J., Yang, Y., Xu, H. T., Chen, J. M., Liu, W. Y., & Lin, B. C. (2006j). Arginine vasopressin enhances periaqueductal gray synthesis and secretion of enkephalin and endorphin in the rat. Brain Research Bulletin, 71, 193–199.
  • Zimmermann, M. (1983). Ethical guidelines for investigations of experimental pain in conscious animal. Pain, 16, 109–110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.