335
Views
26
CrossRef citations to date
0
Altmetric
Research Article

DNA Damage and Impairment of DNA Repair in Alzheimer's Disease

&
Pages 397-403 | Received 01 Sep 2009, Published online: 26 May 2010

REFERENCES

  • Ames, B. N., Shigenaga, M. K., & Hagen, T.M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 90(17), 7915–7922.
  • Anitha, S., Rao, J. K. S., Latha, K. S., & Viswamitra, M. A. (2002). First evidence to show the topological change of DNA from B-DNA to Z-DNA conformation in the hippocampus of Alzheimer's brain. Neuromolecular Medicine, 2(3), 289–297.
  • Atamna, H., Cheung, I., & Ames, B. H. (2000). A method for detecting abasic sites in living cells: Age-dependent changes in base excision repair. Proceedings of the National Academy of Sciences, 97(2), 686–691.
  • Attardi, G., & Schatz, G. (1988). Biogenesis of mitochondria. Annual Review of Cell Biology, 4, 289–333.
  • Bender, A., Schwarzkopf, R. M., McMillan, A., Krishnan, K. J., Rieder, G., Neumann, M., (2008). Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. Journal of Neurology, 255(8), 1231–1235.
  • Blass, J. P. (2002). Alzheimer's disease and Alzheimer's dementia: Distinct but overlapping entities. Neurobiology of Aging, 23(6), 1077–1084.
  • Boerrigter, M. E., van Duijn, C. M., Mullaart, E., Eikelenboom, P., van der Togt, C. M., Knook, D. L., (1991). Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease. Neurobiology of Aging, 12(4), 367–370.
  • Bolin, C. M., Basha, R., Cox, D., Zawia, N. H., Maloney, B., Lahiri, D. K., (2006). Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB Journal, 20(6), 788–790.
  • Braidy, N., Guillemin, G., & Grant, R. (2008). Promotion of cellular NAD(+) anabolism: Therapeutic potential for oxidative stress in ageing and Alzheimer's disease. Neurotoxicity Research, 13(3–4), 173–184.
  • Brasnjevic, I., Hof, P. R., Steinbusch, H. W., & Schmitz, C. (2008). Accumulation of nuclear DNA damage or neuron loss: Molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases. DNA Repair, 7(7), 1087–1097.
  • Calabrese, V., Scapagnini, G., Giuffrida Stella, A. M., Bates, T. E., & Clark, J. B. (2001). Mitochondrial involvement in brain function and dysfunction: Relevance to aging, neurodegenerative disorders and longevity. Neurochemical Research, 26(6), 739–764.
  • Chance, B., Sies, H., & Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiological Reviews, 59(3), 527–605.
  • Chaturvedi, R. K., & Beal, M. F. (2008). Mitochondrial approaches for neuroprotection. Annals of the New York Academy of Sciences, 1147, 395–412.
  • Chen, D., Lan, J., Pei, W., & Chen, J. (2000). Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. Journal of Neuroscience Research, 61(2), 225–236.
  • Coppede, F., & Migliore, L. (2009). DNA damage and repair in Alzheimer's Disease. Current Alzheimer's Research, 6(1), 36–47.
  • Cornett, C. R., Markesbery, W. R., & Ehmann, W. D. (1998). Imbalances of trace elements related to oxidative damage in Alzheimer's disease brain. Neurotoxicology, 19(3), 339–345.
  • Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., McKee, A. C., Beal, M. F., (1994). Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics, 23(2), 471–476.
  • Culmsee, C., & Mattson, M. P. (2005). p53 in neuronal apoptosis. Biochemical and Biophysical Research Communications, 331(3), 761–777.
  • Deibel, M. A., Ehmann, W. D., & Markesbery, W. R. (1996). Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: Possible relation to oxidative stress. Journal of the Beurological Sciences, 143(1–2), 137–142.
  • Desai, V., & Kaler, S. G. (2008). Role of copper in human neurological disorders. The American Journal of Clinical Nutrition, 88(3), 8559–8589.
  • de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., & Wands, J. R. (2000). Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease. Laboratory Investigation, 80(8), 1323–1335.
  • Deng, G., Su, J. H., Ivins, K. J., Van, H. B., & Cotman, C. W. (1999). Bcl-2 facilitates recovery from DNA damage after oxidative stress. Experimental Neurology, 159(1), 309–318.
  • de Souza-Pinto, N. C., & Bohr, V. A. (2002). The mitochondrial theory of aging: Involvement of mitochondrial DNA damage and repair. International Review of Neurobiology, 53, 519–534.
  • de Souza-Pinto, N. C., Eide, L., Hogue, B. A., Thybo, T., Stevnsner, T., Seeberg, E., (2001). Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. Cancer Research, 61(14) 5378–5381.
  • de Vries, H. E., Witte, M., Hondius, D., Rozemuller, A. J., Drukarch, B., Hoozemans, J., (2008). Nrf2-induced antioxidant protection: A promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radical Biology & Medicine, 45(10), 1375–1383.
  • Endres, M., Biniszkiewicz, D., Sobol, R. W., Harms, C., Ahmadi, M., Lipski, A., (2004). Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. The Journal of Clinical Investigation, 113(12), 1711–1721.
  • Fishel, M. L., Vasko, M. R., & Kelley, M. R. (2006). DNA repair in neurons: So if they don't divide what's to repair? Mutation Research, 614(1–2), 24–36.
  • Furuta, A., Iida, T., Nakabeppu, Y., & Iwaki, T. (2001). Expression of hMTH1 in the hippocampi of control and Alzheimer's disease. Neuroreport, 12(13), 2895–2899.
  • Gabbita, S. P., Lovell, M. A., & Markesbery, W. R. (1998). Increased nuclear DNA oxidation in the brain in Alzheimer's disease. Journal of Neurochemistry, 71(5), 2034–2040.
  • Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., & Floyd, R. A. (2000). Reactive oxygen species cell signaling and cell injury. Free Radical Biolology & Medicine, 28(10), 1456–1462.
  • Imam, S. Z., Karahalil, B., Hogue, B. A., Souza-Pinto, N. C., & Bohr, V. A. (2006). Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner. Neurobiology of Aging, 27(8), 1129–1136.
  • Infante, J., Rodryguez-Rodryguez, E., Mateo, I., Llorca, J., Vázquez-Higuera, J. L., Berciano, J., (in press). Gene–gene interaction between heme oxygenase-1 and liver X receptor-_ and Alzheimer's disease risk. Neurobiology of Aging.
  • Kastan, M. B., & Lim, D. S. (2000). The many substrates and functions of ATM. Naturel Reviews Molecular Cell Biology, 1(3), 179–186.
  • Keller, J. N., & Mattson, M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Reviews in the Neurosciences, 9(2), 105–116.
  • Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., (1999). Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proceedings of National Academy of Sciences, 96(23), 13300–13305.
  • Klysik, J., Stirdivant, S. M., Larson, J. E., Hart, P. A., & Wells, R. D. (1981). Left handed DNA in restriction fragments and a recombinant plasmid. Nature, 290(5808), 672–677.
  • Kruman, I. I., Kumaravel, T. S., Lohani, A., Pedersen, W. A., Cutler, R. G., Kruman, Y., (2002). Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. The Journal of Neuroscience, 22(5), 1752–1762.
  • Kruman, I. I., Wersto, R. P., Cardozo-Pelaez, F., Smilenov, L., Chan, S. L., Chrest, F. J., (2004). Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron, 41(4), 549–561.
  • Lanni, C., Racchi, M., Uberti, D., Mazzini, G., Stanga, S., Sinforiani, E., (2008). Pharmacogenetics and pharmagenomics, trends in normal and pathological aging studies: Focus on p53. Current Pharmaceutical Design, 14(26), 2665–2671.
  • LeDoux, S. P., Druzhyna, N. M., Hollensworth, S. B., Harrison, J. F., & Wilson, G. L. (2007). Mitochondrial DNA repair: A critical player in the response of cells of the CNS to genotoxic insults. Neuroscience, 145(4), 1249–1259.
  • Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795.
  • Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422), 709–715.
  • Linnane, A. W., Marzuki, S., Ozawa, T., & Tanaka, M. (1989). Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet, 1(8639), 642–645.
  • Liu, Z., & Martin, L. J. (2001). Motor neurons rapidly accumulate DNA single-strand breaks after in vitro exposure to nitric oxide and peroxynitrite and in vivo axotomy. The Journal of Comparative Neurology, 432(1), 35–60.
  • Lovell, M. A., & Markesbery, W. R. (2007a). Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Research, 35(22), 7497–7504.
  • Lovell, M. A., & Markesbery, W. R. (2007b). Oxidative damage in mild cognitive impairment and early Alzheimer's disease. Journal of Neuroscience Research, 85(14), 3036–3040.
  • Luczaj, W., & Skrzydlewska, E. (2003). DNA damage caused by lipid peroxidation products. Cellular and Molecular Biology Letters, 8(2), 391–413.
  • Mandavilli, B. S., Santos, J. H., & Van, H. B. (2002). Mitochondrial DNA repair and aging. Mutation Research, 509(1–2), 127–151.
  • Mark, R. J., Lovell, M. A., Markesbery, W. R., Uchida, K., & Mattson, M. P. A role for 4-hydroxynonenal, an aldehyde product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. Jounral of Neurochemistry, 68(1), 255–264.
  • Martin, L. J. (2008). DNA damage and repair: Relevance to mechanisms of neurodegeneration. Journal of Neuropathology and Experimental Neurology, 67(5), 377–387.
  • Martin, L. J., Brambrink, A. M., Price, A. C., Kaiser, A., Agnew, D. M., Ichord, R. N., (2000). Neuronal death in newborn striatum after hypoxiaischemia is necrosis and evolves with oxidative stress. Neurobiology of Disease, 7(3), 169–191.
  • Martin, L. J., Chen, K., & Liu, A. (2005). Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked to DNA damage and p53 activation. The Jounral of Neuroscience, 25(27), 6449–6459.
  • Martin, L. J., & Liu, Z. (2002a). Injury-induced spinal motor neuron apoptosis is preceded by DNA single-strand breaks and is p53- and Bax-dependent. Journal of Neurobiology, 50(3), 181–197.
  • Martin, L. J., & Liu, Z. (2002b). DNA damage profiling in motor neurons: A single-cell analysis by comet assay. Neurochemical Research, 27(10), 1093–1104.
  • Martin, L. J., Liu, Z., Chen, K., Price, A. C., Pan, Y., Swaby, J. A., (2007). Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase–1 transgenic mice: Mechanisms of mitochondriopathy and cell death. Journal of Comparative Neurology, 500(1), 20–46.
  • Martin, L. J., Liu, Z., Pipino, J., Chestnut, B., & Landek, M. A. (2008). Molecular regulation of DNA damage–induced apoptosis of neurons in cerebral cortex. Cerebral Cortex, 19(6), 1273–1293.
  • Martin, L. J., Pan, Y., Price, A. C., Sterling, W., Copeland, N. G., Jenkins, N. A., (2006). Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. The Journal of Neuroscience, 26(1), 41–50.
  • Martin, L. J., Price, A. C., McClendon, K. B., Al-Abdulla, N. A., Subramaniam, J. R., Wong, P. C., (2003). Early events of target deprivation/axotomy induced neuronal apoptosis in vivo: Oxidative stress, DNA damage, p53 phosphorylation, and subcellular redistribution of death proteins. Journal of Neurochemistry, 85(1), 234–247.
  • Mattson, M. P. (2004). Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Annals of the New York Academy of Sciences, 1012, 37–50.
  • Mecocci, P., MacGarvey, U., & Beal, M. F. (1994). Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Annals of Neurology, 36(5), 747–751.
  • Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., (1993). Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Annals of Neurology, 34(4), 609–616.
  • Mullaart, E., Boerrigter, M. E., Ravid, R., Swaab, D. F., & Vijg, J. (1990). Increased levels of DNA breaks in cerebral cortex of Alzheimer's disease patients. Neurobiology of Aging, 11(3), 169–173.
  • Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G., & Petrini, J. H. (1998). In situ visualization of DNA double-strand break repair in human fibroblasts. Science, 280(5363), 590–592.
  • Obrenovich, M. E., Joseph, J. A., Atwood, C. S., Perry, G., & Smith, M. A. (2002). Amyloid-_: A (life) preserver for the brain. Neurobiology of Aging, 23(6), 1097–1099.
  • Obulesu, M., Rao, D. M., & Shamasundar, N. M. (in press). Studies on genomic DNA stability in aluminium maltolate treated aged New Zealand rabbit: Relevance to the Alzheimer's animal model. Journal of Clinical Medicine and Research.
  • Parildar-Karpuzoglu, H., Dogru-Abbasoglu, S., Hanagasi, H. A., Karadag, B., Gurvit, H., Emre, M., (2008). Single nucleotide polymorphisms in base-excision repair genes hOGG1, APE1 and XRCC1 do not alter risk of Alzheimer's disease. Neuroscience Letters, 442(3), 287–291.
  • Park, S. Y., Kim, H. S., Cho, E. K., Kwon, B. Y., Phark, S., Hwang, K. W., (2008). Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food and Chemical Toxicology, 46(8), 2881–2887.
  • Pohl, F. M., & Jovin, T. M. (1972). Salt-induced co-operative conformational changes of a synthetic DNA: Equilibrium and kinetic studies with poly (dG-dC). Journal of Molecular Biology, 67(3), 375–396.
  • Polster, B. M., & Fiskum, G. (2004). Mitochondrial mechanisms of neural cell apoptosis. Journal of Neurochemistry, 90(6), 1281–1289.
  • Racchi, M., Uberti, D., Govoni1, S., Memo, M., Lanni, C., Vasto, S., (2008). Alzheimer's disease: New diagnostic and therapeutic tools. Immunity & Ageing, 5, 5–7.
  • Rao, K. S. (1993). Genomic damage and its repair in young and aging brain. Molecular Neurobiology, 7(1), 23–48.
  • Roos, W. P., & Kaina, D. (2006). DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 12(9), 440–450.
  • Schipper, H. M. (2000). Heme oxygenase-1: Role in brain aging and neurodegeneration. Experimental Gerontology, 35(6–7), 821–830.
  • Shackelford, D. A. (2006). DNA end joining activity is reduced in Alzheimer's disease. Neurobiology of Aging, 27(4), 596–605.
  • Swerdlow, R. H., Parks, J. K., Cassarino, D. S., Maguire, D. J., Maguire, R. S., Bennett Jr, J. P., (1997). Cybrids in Alzheimer's disease: A cellular model of the disease? Neurology, 49(4), 918–925.
  • Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., (2000). Single cell gel/comet assay: Guidelines for in vitro and an in vivo genetic toxicological testing. Environmental Molecular Mutagenesis, 35(3), 206–221.
  • Toyokuni, S., Iwasa, Y., Kondo, S., Tanaka, T., Ochi, H., & Hiai, H. (1999). Intranuclear distribution of 8-hydroxy-2.-deoxyguanosine: An immunocytochemical study. Journal of Histochemistry and Cytochemistry, 47(6), 833–836.
  • Wallace, D. C. (2001). Mitochondrial defects in neurodegenerative disease. Mental Retardation and Developmental Disabilities Research Reviews, 7(3), 158–166.
  • Wang, A. H., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., Van Der Marel, G., (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282(5740), 680–686.
  • Wang, J., Xiong, S., Xie, C., Markesbery, W. R., & Lovell, M. A. (2005). Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. Journal of Neurochemistry, 93(4), 953–962.
  • Weissman, L., de Souza-Pinto, N. C., Stevnsner, T., & Bohr, V. A. (2007). DNA repair, mitochondria, and neurodegeneration. Neuroscience, 145(4), 1318–1329.
  • Weissman, L., Jo, D. G., Sorensen, M. M., de Souza-Pinto, N. C., Markesbery, W. R., Mattson, M. P., (2007). Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment. Nucleic Acids Research, 35(16), 5545–5555.
  • White, A. R., Multhaup, G., Maher, F., Bellingham, S., Camakaris, J., Zheng, H., (1999). The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. The Journal of Neuroscience, 19(21), 9170–9179.
  • Williams, M. (2009). Progress in Alzheimer's disease drug discovery: An update. Current Opinion in Investigational Drugs, 10(1), 23–34.
  • Wu, J., Riyaz Basha, Md., Brock, B., Cox, D. P., Cardozo-Pelaez, F., McPherson, C. A., (2008). Alzheimer's disease (AD) like pathology in aged monkeys following infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. The Journal of Neuroscience, 28(1), 3–9.
  • Yamaguchi-Iwai, Y., Sonoda, E., Sasaki, M. S., Morrison, C., Haraguchi, T., Hiraoka, Y., (1999). Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. The Embo Journal, 18(23), 6619–6629.
  • Yang, J. L., Weissman, L., Bohr, V. A., & Mattson, M. P. (2008). Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair, 7(7), 1110–1120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.