366
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Synaptic Plasticity: A Unifying Model to Address Some Persisting Questions

, , &
Pages 289-304 | Received 03 Nov 2010, Published online: 25 Feb 2011

REFERENCES

  • Abraham, W. C., & Bear, M. (1996). Metaplasticity: The plasticity of synaptic plasticity. Trends in Neuroscience, 19, 126–130.
  • Alvarez, V., & Sabatini, B. (2007). Anatomical and physiological plasticity of dendritic spines. Annual Review of Neuroscience, 30, 79–97.
  • Andersen, P., & Anderson, S. A. (1968). Physiological basis of the alpha-rhythm. New York, NY: Appleton-Century-Crofts.
  • Anwyl, R. (2009). Metabotropic glutamate receptor-dependent long-term potentiation. Neuropharmacology, 56(4), 735–740.
  • Artola, A., Brocher, S., & Singer, W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature, 347, 69–72.
  • Barco, A., Alarcon, J. M., & Kandel, E. R. (2002). Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell, 108(5), 689–703.
  • Barria, A., Derkach, V., & Soderling, T. (1997). Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. Journal of Biological Chemistry, 272(52), 32727–32730.
  • Bashir, Z. I., Jane, D. E., Sunter, D. C., Watkins, J. C., & Collingridge, G. L. (1993). Metabotropic glutamate receptors contribute to the induction of long-term depression in the CA1 region of the hippocampus. European Journal of Pharmacology, 239, 265–266.
  • Bassand, P., Bernard, A., Rafiki, A., Gayet, D., & Khestchatisky, M. (1999). Differential interaction of the tSVX motivs of the NR1 and NR2A NMDA receptor subunits with PSD-95 and SAP97. European Journal of Neuroscience, 44, 2031–2043.
  • Bear, M. F. (1995). Mechanism for sliding synaptic modification threshold. Neuron, 15(1), 1–4.
  • Bear, M. F. (1996). A synaptic basis for memory storage in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13453–13459.
  • Bear, M. F. (2003). Bidirectional synaptic plasticity: From theory to reality. In T. Bliss, G. Collingridge, and R. Morris (eds.), LTP: Enhancing Neuroscience for 30 years (pp. 65–78). Oxford: Oxford University Press.
  • Bear, M. F., & Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Current Opinion in Neurobiology, 4, 389–399.
  • Ben-Fredj, N., Grange, J., Sadoul, R., Richard, S., Goldberg, Y., & Boyer, V. (2004). Depolarization-induced translocation of the RNA-binding protein Sam68 to the dendrites of hippocampal neurons. Journal of Cell Science, 117, 1079–1090.
  • Bensol, D. L. (1997). Dendritic compartmentation of NMDA receptor mRNA in cultured hippocampal neurons. Neuroreport, 8, 823–828.
  • Bhatt, D., Zhang, S., & Gan, W. B. (2009). Dendritic spine dynamics. Annual Review of Physiology, 71, 261–282.
  • Bi, H., & Sze, C. I. (2002). N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer's disease. Journal of the Neurological Sciences, 200(1–2), 11–18.
  • Bliss, T. V. P., & Collingridge, G. L. (1993). A synaptic model of long-term potentiation in the hippocampus. Nature, 361, 31–39.
  • Bliss, T. V. P., & Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetised rabbit following stimulation of the perforant path. Journal of Physiology, 23, 357–374.
  • Bliss, T. V. P., & mo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331–351.
  • Blitzer, R. D., Connor, J. H., Brown, G. P., Wong, T., Shenolikar, S., Iyengar, R., (1998). Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science, 280(5371), 1940–1942.
  • Blitzer, R. D., Wong, T., Nouranifar, R., Iyengar, R., & Landau, E. M. (1995). Postsynaptic camp pathway gates early LTP in hippocampal CA1 region. Neuron, 15, 1403–1414.
  • Bolsakov, V. Y., & Siegelbaum, S. A. (1994). Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science, 264, 1148–1152.
  • Bowman, R. E., & Strobel, D. A. (1969). Brain RNA metabolism in the rat during learning. Journal of Comparative & Physiological Psychology, 67, 448–456.
  • Bozon, B., Kelly, A., Josselyn, S. A., Silva, A. J., Davis, S., & Laroche, S. (2003). MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 805–814.
  • Bramham, C. R. (2008). Local protein synthesis, actin dynamics, and LTP consolidation. Current Opinion in Neurobiology, 18(5), 524–531.
  • Bramham, C. R., Alme, M. N., Bittins, M., Kuipers, S. D., Nair, R. R., Pai, B., (2010). The arc of synaptic memory. Experimental Brain Research, 200(2), 125–240.
  • Bredt, D. S., & Snyder, S. H. (1992). Nitric oxide, a novel neuronal messenger. Neuron, 8, 3–11.
  • Cajal, R. Y. (1894). La fine structure des centres nerveux. Proceedings of the Royal Society (London), 55, 444–468.
  • Carlin, R. K., Grab, D. J., & Siekevitz, P. (1981). Function of a calmodulin in postsynaptic densities. III: Calmodulin-binding proteins of the postsynaptic density. Journal of Cell Biology, 89, 449–455.
  • Carlin, R. K., & Siekevitz, P. (1983). Plasticity in the central nervous system: Do synapses divide? Proceedings of the National Academy of Sciences of the United States of America, 80(11), 3517–3521.
  • Chicurel, M. E., & Harris, K. M. (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber buttons in the rat hippocampus. Journal of Comparative Neurology, 325(2), 169–182.
  • Chicurel, M. E., Terrian, D. M., & Potter, H. (1993). mRNA at the synapse: Analysis of a synaptosomal preparation enriched in hippocampal dendritic spines. Journal of Neuroscience, 13, 4054–4063.
  • Christie, B. R., Magee, J. C., & Johnston, D. (1996). Dendritic calcium channels and hippocampal long-term depression. Hippocampus, 6, 17–23.
  • Collingridge, G. L., Kehl, S. J., & McLennan, H. (1983a). Excitatory amino acids in synaptic transmission in the Schaffer collateral–commissural pathway of the rat hippocampus. Journal of Physiology, 334, 33–46.
  • Collingridge, G. L., Kehl, S. J., & McLennan, H. (1983b). The action of N-methylaspartate antagonist on synaptic process in the rat hippocampus. Journal of Physiology (London), 338, 27P.
  • Coussens, C. M., & Teyler, T. J. (1996). Long-term potentiation induces synaptic plasticity at non-tetanized adjacent synapses. Learning & Memory, 3, 106–114.
  • Cowan, A. I., Stricker, C., Reece, L. J., & Redman, S. J. (1998). Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. Journal of Neurophysiology, 79(1), 13–20.
  • Cummings, J. A., Mulkey, R. M., Nicoll, R. A., & Malenka, R. C. (1996). Ca++ signaling requirements for long-term depression in the hippocampus. Neuron, 16, 825–833.
  • Desmond, N. L., & Levy, W. B. (1986). Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. Journal of Comparative Neurology, 253(4), 476–482.
  • Desmond, N. L., & Levy, W. B. (1990). Morphological correlates of long-term potentiation imply the modification of existing synapses, not synaptogenesis, in the hippocampal dentate gyrus. Synapse, 5, 139–143.
  • Dilon, C., & Goda, Y. (2005). The actin cytoskeleton: Integrating form & function at the synapse. Annual Review of Neuroscience, 28, 25–55.
  • Doyle, C., Holscher, C., Rowan, M. J., & Anwyl, R. (1996). The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSP's in rat hippocampal CA1 in vivo. Journal of Neuroscience, 16, 418–424.
  • Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in the area CA1 of the hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings of the National Academy of Sciences of the United States of America, 89, 4363–4367.
  • Dyson, S. E., & Jones, D. G. (1984). Synaptic remodeling during development and maturation: Junction differentiation and splitting as a mechanism for modifying connectivity. Brain Research, 315(1), 125–137.
  • Edwards, F. A. (1995). LTP—A structural model to explain the inconsistencies. Trends in Neuroscience, 18(6), 205–255.
  • Ehlers, M. D. (2000). Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron, 28(5), 511–525.
  • Ehlers, M. D., Tingley, W. G., & Huganir, R. L. (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269, 1734–1737.
  • Elias, G. M., & Nicoll, R. A. (2007). Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends in Cell Biology, 17(7), 343–352.
  • Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term plasticity. Nature, 399, 66–70.
  • Feil, R., & Kleppisch, T. (2008). NO/cGMP-dependent modulation of synaptic transmission. Handbook of Experimental Pharmacology, 184, 529–560.
  • Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Dendritic spines do not split during hippocampal LTP or maturation. Nature Neuroscience, 5, 297–298.
  • Fifkova, E. (1985). A possible mechanism of morphometric changes in dendritic spines induced by stimulation. Cellular & Molecular Neurobiology, 5(1–2), 47–63.
  • Frey, S., & Frey, J. U. (2008). “Synaptic tagging” and “cross-tagging” and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Progress in Brain Research, 169, 117–143.
  • Frey, U., Frey, S., Schollmeier, F., & Krug, M. (1996). Influence of actinomycin-D, an RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. Journal of Physiology (London), 490, 703–711.
  • Frey, U., Krug, M., Reymann, K. G., & Matthies, H. (1988). Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Research, 452(1–2), 57–65.
  • Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385(6616), 533–536.
  • Frey, U., Schollmeier, K., Reymann, K. G., & Seidenbecher, T. (1995). Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience, 67(4), 799–807.
  • Fujii, S., Saito, K., Miyakawa, H., Ito, K. I., & Kato, H. (1991). Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input of CA1 neurons of guinea pigs hippocampal slices. Brain Research, 555, 112–122.
  • Fukunaga, K., Stoppini, L., Miyamoto, E., & Muller, D. (1993). Long-term potentiation is associated with an increased Ca2+/calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 268, 7863–7867.
  • García-López, P., García-Marín, V., & Freire, M. (2007). The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Progress in Neurobiology, 83(2), 110–130.
  • Geinisman, Y., de Toledo-Morrell, L., & Morrell, F. (1986). Aged rats need a preserved complement of perforated axospinous synapses per hippocampal neuron to maintain good spatial memory. Brain Research, 398(2), 266–275.
  • Geinisman, Y., deTolledo-Morrell, L., & Morell, F. (1991). Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Research, 566, 77–88.
  • Goda, Y., & Stevens, C. F. (1996). Long-term depression properties in a simple system. Neuron, 16, 103–111.
  • Graig, A. M., Blackstone, C. D., Huganir, R. L., & Banker, G. (1993). The distribution of glutamate receptors in cultured rat hippocampal neurons: Postsynaptic clustering of AMPA-selective subunits. Neuron, 10, 1055–1068.
  • Gulley, R. L., & Reese, T. S. (1981). Cytoskeletal organization at the postsynaptic complex. Journal of Cell Biology, 91, 298–302.
  • Harris, K. M., Fiala, J. C., & Ostroff, L. (2003). Structural changes at dendritic spine synapses during long-term potentiation. In T. Bliss, G. Collingridge, and R. Morris (eds.), LTP: Enhancing Neuroscience for 30 years (pp. 229–234). Oxford: Oxford University Press.
  • Harris, K. M., & Kater, S. B. (1994). Dendritic spines: Cellular specializations imparting both stability and flexibility to synaptic function. Annual Review of Neuroscience, 14, 341–371.
  • Harris, K. M., & Stevens, J. K. (1989). Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. Journal of Neuroscience, 9, 2982–2992.
  • Hering, H., & Sheng, M. (2001). Dendritic spines: Structure, dynamics and regulation. Nature Reviews Neuroscience, 2, 880–888.
  • Holland, L. L., & Wagner, J. J. (1998). Primed facilitation of homosynaptic long-term depression and depotentiation in rat hippocampus. Journal of Neuroscience, 18, 887–894.
  • Hollmann, M., Hartley, M., & Heinemann, S. (1991). Ca++ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science, 252, 851–853.
  • Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45(2), 279–291.
  • Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E., & Svoboda, K. (2006). Experience-dependent and cell-type-specific spine growth in the neocortex. Nature, 441, 979–983.
  • Hosokawa, T., Rusakov, D. A., Bliss, T. V., & Fine, A. (1995). Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: Evidence for changes in length and orientation associated with chemically induced LTP. Journal of Neuroscience, 15(8), 5560–5573.
  • Howland, J. G., & Wang, Y. T. (2008). Synaptic plasticity in learning and memory: Stress effects in the hippocampus. Progress in Brain Research, 169, 145–158.
  • Huang, C. C., Liang, Y. C., & Hsu, K. S. (2001). Characterization of the mechanism underlying the reversal of long-term potentiation by low frequency stimulation at hippocampal CA1 synapses. Journal of Biological Chemistry, 276, 48108–48117.
  • Huber, K. M., Roder, J. C., & Bear, M. F. (2001). Chemical induction of mGluR5 and protein synthesis-dependent long-term depression in hippocampal area CA1. Journal of Neurophysiology, 86(1), 321–325.
  • Jaffe, D. B., & Brown, T. H. (1994). Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. Journal of Neurophysiology, 72(1), 471–474.
  • Jaffe, D. B., Fisher, S. A., & Brown, T. H. (1994). Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. Journal of Neurobiology, 25(3), 220–233.
  • Jensen, V., Walaas, S. I., Hilfiker, S., Ruiz, A., & Hvalby, Ø. (2007). A delayed response enhancement during hippocampal presynaptic plasticity in mice. Journal of Physiology, 583, 129–143.
  • Kandel, E. R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.
  • Kessels, H. W., & Malinow, R. (2009). Synaptic AMPA receptor plasticity and behavior. Neuron, 61(3), 340–350.
  • Kim, S. J., Jin, Y., Kim, J., Shin, J. H., Worley, P. F., & Linden, D. J. (2008). Transient upregulation of postsynaptic IP3-gated Ca release underlies short-term potentiation of metabotropic glutamate receptor 1 signaling in cerebellar purkinje cells. Journal of Neuroscience, 28(17), 4350–4355.
  • Kimura, F., Tsumoto, T., Nishigori, A., & Yoshimura, Y. (1990). Long-term depression but not potentiation is induced in Ca(2+)-chelated visual cortex neurons. Neuroreport, 1(1), 65–68.
  • Kirkwood, A., Rioult, M. C., & Bear, M. F. (1996). Experience dependent modification of synaptic plasticity in visual cortex. Nature, 381, 526–528.
  • Kirsch, J., & Betz, H. (1995). The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. Journal of Neuroscience, 15, 41148–41156.
  • Kling, U., & Székely, G. (1968). Simulation of rhythmic nervous activities: I. Function of networks with cyclic inhibitions. Kybernetic, 5, 89–103.
  • Koch, C., & Zador, A. (1993). The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization. Journal of Neuroscience, 13(2), 413–422.
  • Korkotian, E., & Segal, M. (2007). Morphological constraints on calcium dependent glutamate receptor trafficking into individual dendritic spine. Cell Calcium, 42(1), 41–57.
  • Landis, D. M., & Reese, T. S. (1983). Cytoplasmic organization in cerebellar dendritic spines. Journal of Cell Biology, 97, 1169–1178.
  • Lauri, S. E., Palme, R. M., Segerstrale, M., Vesikansa, A., Taira, T., & Collingridge, G. L. (2007). Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus. Neuropharmacology, 52(1), 1–11.
  • Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405(6789), 955–999.
  • Levy, W. B., Desmond, N. L., & Zhang, D. X. (1998). Perforant path activation modulates the induction of long-term potentiation of the Schaffer collateral–hippocampal CA1 response: Theoretical and experimental analyses. Learning & Memory, 4, 510–518.
  • Levy, W. B., & Steward, O. (1979). Synapses as associative memory elements in the hippocampal formation. Brain Research, 175, 233–245.
  • Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530), 400–404.
  • Liao, D., Jones, A., & Malinow, R. (1992). Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus. Neuron, 9(6), 1089–1097.
  • Lisman, J. (1985). A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase. Proceedings of the National Academy of Sciences of the United States of America, 82(9), 3055–3057.
  • Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9574–9578.
  • Lisman, J. (1994). The CaM kinase II hypothesis for the storage of synaptic memory. Trends in Neuroscience, 17(10), 406–412.
  • Lisman, J. E., & Harris, K. M. (1993). Quantal analysis and synaptic anatomy—Integrating two views of hippocampal plasticity. Trends in Neuroscience, 16(4), 141–147.
  • Lisman, J., & Zhabotinsky, A. M. (2001). A model for synaptic memory: A CamKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 31, 191–201.
  • Lϕmo, T. (1966). Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiologica Scandinavica, 68(Suppl. 277), 128.
  • Lüscher, C., Nicoll, R. A., Malenka, R. C., & Muller, D. (2000). Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nature, 3(6), 545–550.
  • Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., & Schottler, F. (1983). Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature, 305, 719–721.
  • Mackler, S. A., Brooks, B. P., & Eberwine, J. H. (1993). Stimulus-induced coordinate changes in mRNA abundance in single postsynaptic hippocampal CA1 neurons. Neuron, 9, 539–548.
  • Makhinson, M., Chotiner, J. K., Watson, J. B., & O'Dell, T. J. (1999). Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. Journal of Neuroscience, 19(7), 2500–2510.
  • Malenka, R. C. (1991). The role of postsynaptic calcium in the induction of long-term potentiation. Molecular Neurobiology, 5, 289–295.
  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44(1), 5–21.
  • Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340(6234), 554–557.
  • Malenka, R. C., Kauer, J. A., Zucker, R. S., & Nicoll, R. A. (1998). Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science, 242, 81–84.
  • Maletic-Savatic, M., & Malinow, R. (1998a). Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part I: Trans-Golgi network-derived organelles undergo regulated exocytosis. Journal of Neuroscience, 18, 6803–6813.
  • Maletic-Savatic, M., & Malinow, R. (1998b). Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: Mediation by calcium/calmodulin-dependent protein kinase II. Journal of Neuroscience, 18, 6814–6821.
  • Maletic-Savatic, M., Malinow, R., & Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science, 283, 1923–1927.
  • Matsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y., Iino, M., & Kasai, H. (2001). Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neuroscience, 4(11), 1086–1092.
  • Matus, A. I., & Taff-Jones, D. H. (1978). Morphology and molecular composition of isolated postsynaptic junctional structures. Proceedings of the Royal Society (London), B: Biological Sciences, 203, 135–151.
  • Mayford, M., Wang, J., Kandel, E. R., & O'Dell, T. J. (1995). CaM-KII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell, 81, 891–904.
  • Medina, J. H., & Izquierdo, I. (1995). Retrograde messengers, long-term potentiation and memory. Brain Research Reviews, 21(2), 185–194.
  • Melchers, B. P., Pennartz, C. M., Wadman, W. J., & Lopes da Silva, F. H. (1988). Quantitative correlation between tetanus-induced decreases in extracellular calcium and LTP. Brain Research, 454, 1–10.
  • Michmizos, D., & Baloyannis, S. (1994). Long-term plasticity: A novel electrostructural model to account for the induction of synaptic depression. Abstracts of the 14th Meeting of the Hellenic Society of Neuroscience, 14, 24.
  • Michmizos, D., Kosta, V., Karlovasitou-Koniari, A., Koutsouraki, E., Asprodini, E., & Baloyannis, S. (2004). Synaptic plasticity I: A symmetric electrostructural model to account for the induction of long-term depression (LTD). Abstracts of the 2nd International Congress on the Improvement of the Quality of Life on Dementia, Epilepsy & MS, 2, 66–67.
  • Montarolo, P. G., Goelet, P., Castellucci, V. F., Morgan, J., Kandel, E. R., & Schacher, S. (1986). A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science, 234(4781), 1249–1254.
  • Montgomery, J. M., Selcher, J. C., Hanson, J. E., & Madison, D. V. (2005). Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. Neuroscience, 6, 48.
  • Morishita, W., Connor, J. H., Xia, H., Quinlan, E. M., Shenolikar, S., & Malenka, R. C. (2001). Regulation of synaptic strength by protein phosphatase-1. Neuron, 32(6), 1133–1148.
  • Morishita, W., Marie, H., & Malenka, R. C. (2005). Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nature Neuroscience, 8(8), 1043–1050.
  • Mozhayeva, M. G., Matos, M. F., Liu, X., & Kavalali, E. T. (2004). Minimum essential factors required for vesicle mobilization at hippocampal synapses. Journal of Neuroscience, 24(7), 1680–1688.
  • Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineurin/inhibitor cascade in hippocampal long-term depression. Nature, 369, 486–488.
  • Mulkey, R. M., Herron, C. E., & Malenka, R. C. (1993). An essential role for protein phosphatases in hippocampal long-term depression. Science, 261, 1051–1055.
  • Mulkey, R. M., & Malenka, R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron, 9, 967–975.
  • Muller, D., Heff, S., & Figurov, A. (1995). Heterosynaptic interactions between LTP and LTD in CA1 hippocampal slices. Neuron, 14, 599–605.
  • Murthy, V. N. (1998). Synaptic plasticity: Step-wise strengthening. Current Biology, 8R, 650–653.
  • Nakano, M., Yamada, S., Udagawa, R., & Kato, N. (2004). Frequency-dependent requirement for calcium store-operated mechanisms in induction of homosynaptic long-term depression at hippocampus CA1 synapses. European Journal of Neuroscience, 19(10), 2881–2887.
  • Nayak, A., Zastrow, D. J., Lickteig, R., Zahniser, N. R., & Browning, M. D. (1998). Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature, 394, 680–683.
  • Nevian, T., & Sackmann, B. (2006). Spine Ca2+ signaling in spike-timing dependent plasticity. Journal of Neuroscience, 26(43), 11001–11013.
  • Nguen, P. V., Abel, T., & Kandel, E. R. (1994). Requirements of a critical period of transcription for induction of a late phase of LTP. Science, 265, 1104–1107.
  • Nicoll, R. A., & Malenka, R. C. (1997). Neurobiology. Long-distance long-term depression. Nature, 388, 427–428.
  • Nicoll, R. A., Oliet, S. H. R., & Malenka, R. C. (1998). NMDA receptor-dependent and metabotropic glutamate receptor-dependent forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neurobiology of Learning & Memory, 70, 62–72.
  • Nieto-Sampedro, M., Bussineau, C. M., & Cotman, C. W. (1982). Isolation, morphology and protein and glycoprotein composition of synaptic junctional fractions from the brain of lower vertebrates: Antigen PSD-95 as a junctional marker. Journal of Neuroscience, 2, 722–734.
  • Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408(6812), 584–588.
  • O'Dell, T. J., Huang, P. L., Dawson, T. M., Dinerman, J. L., Snyder, S. H., Kandel, E. R., (1994). Endothelial NOS and the blockade of LTP by NOS-inhibitors in mice lacking neuronal NOS. Science, 265, 542–546.
  • O'Dell, T. J., & Kandel, E. R. (1994). Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learning & Memory, 1(2), 129–139.
  • Ostroff, L. E., Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron, 35, 535–545.
  • Penfield, W. (1968). Engrams in the human brain: Mechanism of memory. Proceedings of the Royal Society of Medicine, 61(8), 831–840.
  • Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampus zone. AMA Archives of Neurology & Psychiatry, 79(5), 475–497.
  • Peng, Y., Zhao, J., Gu, Q. H., Chen, R. Q., Xu, Z., Yan, J. Z., (2010). Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses. Hippocampus, 20(5), 646–658.
  • Pocket, S., Brookes, N. H., & Bindman, L. J. (1990). Long-term depression at synapses in slices of rat hippocampus can be induced by bursts of postsynaptic activity. Experimental Brain Research, 80, 196–200.
  • Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D., & Somogyi, P. (2000). NMDA receptor content of synapse in stratum radiatum of the hippocampal CA1 area. Journal of Neuroscience, 20(7), 2512–2522.
  • Raymond, C. R. (2008). Different requirements for action potentials in the induction of different forms of long-term potentiation. Journal of Physiology, 586(7), 1859–1865.
  • Regehr, W. G., & Tank, D. W. (1990). Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CA1 pyramidal cell dendrites. Nature, 345, 807–810.
  • Reyes-Harde, M., & Stanton, P. K. (1998). Postsynaptic phospholipase C activity is required for the induction of homosynaptic long-term depression in rat hippocampus. Neuroscience Letters, 252, 155–158.
  • Roberts, L. A., Higgins, M. J., O'Shaughnessy, C. T., Stone, T. W., & Morris, B. J. (1996). Changes in hippocampal gene expression associated with the induction of long-term potentiation. Brain Research and Molecular Brain Research, 42(1), 123–127.
  • Roberts, L. A., Large, C. H., Higgins, M. J., Stone, T. W., O'Shaughnessy, C. T., & Morris, B. J. (1998). Increased expression of dendritic mRNA following the induction of long-term potentiation. Brain Research and Molecular Brain Research, 56, 38–44.
  • Rose, S. (1994). La Mémoire: Des molecules à l’ esprit. Paris: Edition de Seuil.
  • Santos, S. D., Carvalho, A. L., Caldeira, M. V., & Duarte, C. B. (2009). Regulation of AMPA receptors and synaptic plasticity. Neuroscience, 158(1), 105–125.
  • Satoh, M., & Kaneko, S. (1994). Involvement of postsynaptic G-proteins in hippocampal long-term potentiation. Reviews in Neuroscience, 5, 1–9.
  • Savchenko, A., Barnes, S., & Kramer, R. H. (1997). Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature, 390(6661), 694–698.
  • Schwartz, N. E., & Alford, S. (1998). Modulation of pre- and postsynaptic calcium dynamics by ionotropic glutamate receptors at a plastic synapse. Journal of Neurophysiology, 79, 2191–2203.
  • Sossin, W. S. (1996). Mechanisms for the generation of synapse specificity in long-term memory: The implications of a requirement for transcription. Trends in Neuroscience, 19, 215–218.
  • Stanton, P. K. (1996). LTD, LTP and the sliding threshold for long-term synaptic plasticity. Hippocampus, 6, 35–42.
  • Stäubli, V. G., Izrael, Z., & Xu, F. (1996). Remembrance of odors past: Enhancement by central facilitation of AMPA receptors. Behavioral Neuroscience, 110, 1067–1073.
  • Stäubli, V. G., & Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by “theta” pattern stimulation. Brain Research, 435(1–2), 227–234.
  • Stäubli, V. G., & Lynch, G. (1990). Stable depression of potentiated synaptic responses in the hippocampus with 1–5 Hz stimulation. Brain Research, 513(1), 113–118.
  • Stäubli, V. G., & Zi, Z. X. (1996). The induction of homo- vs. heterosynaptic LTD in area CA1 of hippocampal slices from adult rats. Brain Research, 714, 169–176.
  • Steward, O., & Worley, P. (2002). Local synthesis of proteins at synaptic sites on dendrites: Role in synaptic plasticity and memory consolidation? Neurobiology of Learning and Memory, 78, 508–527.
  • Strack, S., Choi, S., Lovinger, D. M., & Colbran, R. J. (1997). Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. Journal of Biological Chemistry, 272, 13467–13470.
  • Sze, C., Bi, H., Kleinschmidt-DeMasters, B. K., Filley, C. M., & Martin, L. J. (2001). N-methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer's disease. Journal of Neurological Sciences, 182(2), 151–159.
  • Teyler, T. J. (1987). Long-term potentiation and memory. International Journal of Neurology, 21–22, 163–171.
  • Teyler, T. J., Cavus, I., Coussens, C., DiScenna, P., Grover, L., Lee, Y. P., (1994). Multideterminant role of calcium in hippocampal synaptic plasticity. Hippocampus, 4, 623–634.
  • Teyler, T. J., & Discenna, P. (1984). Long-term potentiation as a candidate mnemonic device. Brain Research, 319(1), 15–28.
  • Thiels, E., Norman, E. D., Barrionuevo, G., & Klann, E. (1998). Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo. Neuroscience, 86, 1023–1029.
  • Tonegawa, S., Nakazawa, K., & Wilson, M. A. (2003). Genetic neuroscience of mammalian learning and memory. In T. Bliss, G. Collingridge, and R. Morris (eds.), LTP: Enhancing Neuroscience for 30 years (pp. 301–314). Oxford: Oxford University Press.
  • Topolnik, L., Chamberland, S., Pelletier, J. G., Ran, I., & Lacaille, J. C. (2009). Activity-dependent compartmentalized regulation of dendritic Ca2+ signaling in hippocampal interneurons. Journal of Neuroscience, 29(14), 4658–4663.
  • Wagner, J. J., & Alger, B. E. (1995). GABAergic and developmental influences on homosynaptic LTD and depotentiation in rat hippocampus. Journal of Neuroscience, 15(2), 1577–1586.
  • Westenbroek, R. E., Ahlijanian, M. K., & Catterall, W. A. (1990). Clustering of L-type Ca++ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 347, 281–284.
  • Wexler, E. M., & Stanton, P. K. (1993). Priming of homosynaptic long-term depression in hippocampus by previous synaptic activity. Neuroreport, 4(5), 591–594.
  • Wolf, M., & Sahyoun, N. (1986). Protein kinase C phosphatidylserine bind to Mr 110,000/115,000 polypeptides enriched in cytoskeletal and postsynaptic density preparations. Journal of Biological Chemistry, 261, 13327–13332.
  • Wu, H., Zhou, Y., & Xiong, Z. Q. (2007). Transducer of regulated CREB and late phase long-term synaptic potentiation. FEBS Journal, 274(13), 3218–3223.
  • Wyneken, U., Marengo, J. J., & Orrego, F. (2004). Electrophysiology and plasticity in isolated postsynaptic densities. Brain Research Reviews, 47(1–3), 54–70.
  • Xiao, M. Y., Karpefors, M., Niu, Y. P., & Wingstrom, H. (1995). The complementary nature of long-term depression and potentiation revealed by dual component excitatory postsynaptic potentials in hippocampal slices from young rats. Neuroscience, 68, 625–635.
  • Yang, X. D., Connor, J. A., & Faber, D. S. (1994). Weak excitation and simultaneous inhibition induce long-term depression in hippocampal CA1 neurons. Journal of Neurophysiology, 71, 1586–1590.
  • Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., & Kasai, H. (2008). Principles of long-term dynamics of dendritic spines. Journal of Neuroscience, 28(50), 13598–13608.
  • Zador, A., & Koch, C. (1994). Linearized models of calcium dynamics: Formal equivalence to the cable equation. Journal of Neuroscience, 14, 4705–4715.
  • Zador, A., Koch, C., & Brown, T. H. (1990). Biophysical model of a Hebbian synapse. Proceedings of the National Academy of Sciences of the United States of America, 87(17), 6718–6722.
  • Zhuo, M., Meller, S. T., & Gebhart, G. F. (1993). Endogenous nitric oxide is required for tonic cholinergic inhibition of spinal mechanical transmission. Pain, 54(1), 71–78.
  • Zhuo, M., Zhang, W., Son, H., Mansuy, I., Sobel, R. A., Seidman, J., et al. (1999). A selective role of calcineurin alpha in synaptic depotentiation in hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 96, 4650–4655.
  • Ziff, E. B. (1997). Enlightening the postsynaptic density. Neuron, 19, 1163–1174.
  • Zorumski, C. F., & Izumi, Y. (1993). Nitric oxide and hippocampal synaptic plasticity. Biochemical Pharmacology, 46, 777–785.
  • Zuo, Y., Lin, A., Chang, P., & Gan, W. B. (2005). Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron, 46(2), 181–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.