16
Views
64
CrossRef citations to date
0
Altmetric
Original Article

Magnetic Stimulation in the Treatment of Partial Seizures

, , &
Pages 141-171 | Received 20 Apr 1991, Accepted 01 Jun 1991, Published online: 05 Aug 2009

References

  • Acuna-Castroviejo D., Rosenstein R. E., Romeo H. E., Cardinali D. P. Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats. Neuroendocrinology 1986a; 43: 24–31
  • Acuna-Castroviejo D., Lowenstein P. R., Rosenstein R. E., Cardinali D. P. Diurnal rhythm of benzodiazepine binding in rat cerebral cortex: disruption by pinealectomy. Journal of Pineal Research 1986b; 3: 101–109
  • Adams R. D., Victor M. Principles of neurology. McGraw-Hill Company, New York 1985; 233–254
  • Adey W. R. Tissue interactions with nonionizing electromagnetic fields. Physiological Reviews 1981; 61: 435–514
  • Adler K., Taylor D. H. Melatonin and thyroxine: influence on compass orientation in Salamanders. Journal of Comparative Physiology 1980; A136: 235–241
  • Albertson T. E., Peterson S. L., Stark L. G., Lakin M. L., Winters W. D. The anticonvulsant properties of melatonin on kindled seizures in rats. Neuropharmacology 1981; 20: 61–66
  • Anninos P. A., Tsagas N. Localization and cure of epileptic foci with the use of MEG measurements. International Journal of Neuroscience 1989; 46: 235–242
  • Anninos P. A., Kokkinidis M., Hoke M., Pantev Ch., Lehnertz K., Lutkenhoner B. MEG measurements with SQUID as a diagnostic tool for epileptic patients. Brain Research Bulletin 1986; 16: 549–551
  • Anninos P. A., Anogianakis G., Lehnertz K., Pantev C. H., Hoke M. Biomagnetic measurements using SQUID. International Journal of Neuroscience 1987; 37: 149–168
  • Anninos P. A., Tsagas N., Adamopoulos A. A brain model theory for epilepsy and the mechanism for treatment with experimental verification using SQUID measurements. Models of brain function, R. M. Cotterill. Cambridge University Press, New York 1989; 405–421
  • Antimonii G. D., Salamov R. A. Action of a modulated electromagnetic field on experimentally evoked epileptiform brain activity in rate. Bulletin of Experimental Biology and Medicine 1980; 89: 145–148
  • Anton-Tay F. Melatonin: effects on brain function. Advances in Biochemical Psychopharmacology 1974; 11: 315–324
  • Anton-Tay F., Diaz J. L., Fernandez-Guardiola A. On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sciences 1973; 10: 841–850
  • Anton-Tay F., Wurtman R. J. Regional uptake of 3H-melatonin from blood or cerebrospinal fluid by rat brain. Nature 1969; 221: 474–475
  • Bajorek J. B., Lomax P. Modulation of spontaneous seizures in the Mongolian gerbil: effects of beta-endorphin. Peptides 1982; 3: 83–86
  • Baker R. R. Goal orientation in blindfolded humans after longdistance displacement: possible involvement of a magnetic sense. Science 1980; 210: 555–557
  • Bardasano J. L., Meyer A. J., Picazo L. The pineal organ of the hamster and magnetic fields. Proceedings of the eighth European congress on electron microscopy 1984; 3: 1949–1950
  • Bardasano J. L., Meyer A. J., Picazo L. Ultrastructure of the pineal cells of the homing pigeon Columba livia and magnetic fields (first trials). Journal fuer Hirnforschung 1985; 26: 471–475
  • Barth D. S., Sutherling W., Engel J., Beatty J. Neuromagnetic localization of epileptiform spike activity in the human brain. Science 1982; 218: 891–984
  • Barth D. S., Sutherling W., Engel J., Beatty J. Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 1984; 223: 293–296
  • Barth D., Beatty J., Broffman J., Sutherling W. Magnetic localization of a dipolar current source implanted in a sphere and a human cranium. Electroencephalography and Clinical Neurophysiology 1986; 63: 260–273
  • Bindoni M., Rizzo R. Hippocampal evoked potentials and convulsive activity after electrolytic lesions of the pineal body in chronic experiments in rabbits. Archives of Science and Biology 1965; 49: 223–233
  • Bliss V. L., Heppner F. H. Circadian activity rhythms influenced by near zero magnetic field. Nature 1976; 261: 411–412
  • Brown F. A., Scow K. M. Magnetic induction of a circadian cycle in hamsters. Journal of Interdisciplinary Cycle Research 1978; 9: 137–145
  • Burr H. S., Northorp F. Evidence for the existence of an electrodynamic field in living organisms. National Academy of Science 1939; 25: 284–288
  • Cain D. P., Corcoran M. E. Epileptiform effects of Met-enkephalin, beta-endorphin and morphine: kindling of generalized seizures and potentiation of epileptiform effects by handling. Brain Research 1985; 338: 327–336
  • Chugani H. T., Ackermann R. F., Chugani D. C., Engel J. Opioid-induced epileptic phenomena: Anatomical, behavioral, and electroencephalographic features. Annals of Neurology 1984; 51: 361–368
  • Cohen D., Cuffin N., Yunokuchi K., Maniewski R., Purcell C., Cosgrove G. R., Ives J., Kennedy J. G., Schomer D. L. MEG versus EEG localization test using implanted sources in the human brain. Annals of Neurology 1990; 28: 811–817
  • Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electrographic classification for epileptic seizures. Epilepsia 1981; 22: 489–522
  • Costa E., Guidotti A., Toffano G. Molecular mechanisms mediating the action of diazepam on GABA receptors. British Journal of Psychiatry 1978; 133: 239–248
  • Cramer H., Rudolph J., Consbruch U., Kendel K. On the effects of melatonin on sleep and behavior in man. Advances in Biochemical Psychopharmacology 1974; 11: 187–191
  • Cremer-Bartels G., Krause K., Keuchle H. J. Influence of low magnetic field-strength variations on the retina and pineal gland of quails and humans. Graefe's Archives of Clinical and Experimental Opthalmology 1983; 220: 248–252
  • Cremer-Bartels G., Krause K., Mitoskas G., Brodersen D. Magnetic field of the earth as additional Zeitgeber for endogenous rhythms?. Naturwissenchaften 1984; 71: 567–574
  • Cremer-Bartels G., Krause K., Mitoskas G. Low magnetic field effects in pineal gland in vitro. The pineal gland: endocrine aspects, G. M. Brown, S. D. Wainwright. Pergamon Press, Oxford 1985; 67–74
  • Datta P. C., King M. G. Melatonin: effects on brain and behavior. Neuroscience & Biobehavioral Reviews 1980; 4: 451–458
  • Delorenzi E. Influence of a magnetic field on the multiplication of cells activated in vitro. Increase in the frequency of mitoses and anomalies of the mitotic process. Biolletino della Societa Intaliana di Biologia Sperimentale (Milano)) 1935; 10: 702–704
  • DeLorge J. Effects of magnetic fields on behavior in nonhuman primates. Magnetic field effects in biological systems, T. Tenforde. Plenum Press, New York 1979; 32
  • Demaine C., Semm P. The avian pineal gland as an independent magnetic sensor. Neuroscience Letters 1985; 62: 119–122
  • Demaine C., Semm P. Magnetic fields abolish nychthermeral rhythmicity of responses of Purkinje cells to the pineal hormone melatonin in the pigeon's cerebellum. Neuroscience Letters 1986; 72: 158–162
  • Dixey R., Rein G. 3H-noradrenaline release potentiated in a clonal nerve cell line by low-intensity pulsed magnetic fields. Nature 1982; 296: 253–256
  • Dreifuss F. E. Classification of epileptic seizures and the epilepsies. Pediatric Clinics of North America 1989; 36: 265–279
  • Elger C. E., Hoke M., Lehnertz K., Pantev C., Lutkenhoner B., Anninos P. A., Anogianakis G. Mapping of MEG amplitude spectra: Its significance for the diagnosis of focal epilepsy. Topographic brain mapping of EEG and evoked potentials, K. Maurer. Springer Verlag, Berlin 1989; 565–570
  • Engel J. Surgical treatment of the epilepsies. Raven Press, New York 1987
  • Enna S. J., Ferkany J. W., van Woert M. H., Butler I. J. Measurement of GABA transaminase inhibitors. Huntington's disease, advances in neurology, T. Chase, N. Wexler, A. Barbeau. Raven Press, New York 1979; vol. 23: 741–750
  • Erlich S. S., Apuzzo M. L. J. The pineal gland: anatomy, physiology, and clinical significance. Journal of Neurosurgery 1985; 63: 321–341
  • Fariello R. G., Bubenic G. A. Melatonin-induced changes in the sensory activation of acute epileptic foci. Neuroscience Letters 1976; 3: 151–155
  • Fariello R. G., Bubenik G. A., Brown G. M., Grota L. J. Epileptogenic action of intra- ventricularly injected antimelatonin antibody. Neurology 1977; 27: 567–570
  • Frenk H. Pro- and anticonvulsant actions of morphine and interaction of multiple opiate and nonopiate systems. Brain Research Review 1983; 6: 197–210
  • Gaffori O., Van Ree J. M. Serotonin and antidepressant drugs antagonize melatonin-induced behavioral changes after injection into the nucleus accumbens of rats. Neuropharmacology 1985; 24: 237–244
  • Gastaut H., Tassinari C. A. The ictal and interictal EG in different types of epilepsy. Handbook of electroencephahgraphy and clinical neurophysiology, A. Remond. Elsevier, Amsterdam 1988; vol. 13: 3–6; 47–64
  • Gibbs F. A., Gibbs E. L., Lennox W. G. Epilepsy: a paroxysmal cerebral dysrhythmia. Brain 1937; 60: 377–342
  • Haberditzl W. Enzyme activity in high magnetic fields. Nature 1967; 213: 72–73
  • Heath R. G., Dempesy C. W., Fontana C. J., Fitzjarrell A. T. Feedback loop between cerebellum and septal-hippocampal sites: Its role in emotion and epilepsy. Biological Psychiatry 1980; 15: 541–556
  • Heinemann U., Hamon B. Calcium and epileptogenesis. Experimental Brain Research 1986; 65: 1–10
  • Hishikawa Y., Cramer H., Kuhlo W. Natural and melatonin-induced sleep in young chickens—A behavioral and electrographic study. Experimental Brain Research 1969; 7: 84–94
  • Izumi K., Donaldson J., Minnich J., Barbeau A. Quabain-induced seizures in rats: modification by melatonin and melanocyte-stimulating hormone. Canadian Journal of Physiology and Pharmacology 1973; 51: 572–578
  • Jasper H. H. The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 1958; 10: 367–380
  • Jankovic B. D., Maric D., Ranin J., Veljic J. Magnetic fields, brain and immunity: effect on humoral and cell-mediated immune responses. International Journal of Neuroscience.
  • John E. R. Mechanisms of memory in representational systems. Academic Press, New York 1967; 271–330
  • Kaczmarek L. K., Adey W. R. Weak electric gradients change ionic and transmitter fluxes in cortex. Brain Research 1974; 66: 537–540
  • Kaufman L., Williamson S. J. Magnetic location of cortical activity. Evoked potentials, I. Bodis-Wollner. Annals of the New York Academy of Science. 1982; 388: 197–213
  • Kavaliers M., Ossenkopp K. P., Hirst M. Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice. Physiology & Behavior 1984; 32: 261–264
  • Kavaliers M., Ossenkopp K. P. Tolerance to morphine-induced analgesia in mice: magnetic fields function as environmental specific cues and reduce tolerance development. Life Sciences 1985; 37: 1125–1135
  • Kavaliers M., Ossenkopp K. P. Stress-induced opioid analgesia and activity in mice: inhibitory influences of exposure to magnetic fields. Psychopharmacology 1986a; 89: 440–443
  • Kavaliers M., Ossenkopp K. P. Magnetic fields differentially inhibit mu, delta, kappa and sigma opiate-induced analgesia in mice. Peptides 1986b; 7: 449–453
  • Kavaliers M., Ossenkopp K. P. Magnetic field inhibition of morphine-induced anagesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Research 1986c; 379: 30–38
  • Kavaliers M., Ossenkopp K. P. Calcium channel involvement in magnetic field inhibition of morphine-induced analgesia. Naunyn-Schmiederberg's Archives of Pharmacology 1987; 336: 308–315
  • Keshavan M. S., Gangadhar B. N., Gautman R. U., Ajit V. B., Kapur R. L. Convulsive threshold in humans and rats and magnetic field changes: observations during total solar eclipse. Neuroscience Letters 1981; 22: 205–208
  • Leask M. J. M. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 1977; 267: 144–145
  • Lehnertz K., Elger C. E., Hoke M., Pantev C., Luetkenhoener B., Anninos P. A., Anogianakis G. Two-dimensional spectral analysis of MEG data in epileptic patients. Advances in Epileptology. Raven Press, New York 1989; vol. 17
  • Lowenstein P. R., Rosenstein R., Cardinali D. P. Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex. Neurochemistry International 1985; 7: 675–681
  • Mahlum D. D., Sikov M. R., Decker J. R. Dominant lethal studies in mice exposed to direct current magnetic fields. Biological effects of extremely low frequency electromagnetic fields, R. D. Phillips, M. F. Gillis. U.S. Department of Energy. 1979, Conf. 781016
  • Malinin G. I., Gregory W. D., Morelli L. Evidence of morphological and physiological transformation of mamalian cells by strong magnetic fields. Science 1976; 194: 844–846
  • Marczynski T. J., Yamaguchi N., Ling G. M., Grodzinska L. Sleep induced by the administration of melatonin (5-methoxy-N-acetylryptamine) to the hypothalamus in unrestrained cats. Experientia 1964; 20: 435–436
  • Martini A., Sacerdote P., Mantegazza P., Panerai A. Antiepileptic agents affect hypothalamic beta-endorphin concentrations. Journal of Neurochemistry 1984; 43: 871–873
  • Mather J. G., Baker R. R. Magnetic sense of direction in wood mice for root-based navigation. Nature 1981; 291: 152–155
  • Neurath P. W. High gradient magnetic field inhibits embryonic development of frogs. Nature 1968; 219: 1358–1359
  • Nir I., Behroozi K., Assael M., Ivriani I., Sulman F. G. Changes in the electrical activity of the brain following pinealectomy. Neuroendocrinology 1969; 4: 122–127
  • Nunez P. L. Localization of brain activity with electronencephalography. Magnetoencephalography, S. Sato. Raven Press, New York 1990; vol. 54: 39–65
  • Olcese J., Reuss S. Magnetic field effects on pineal gland melatonin synthesis: comparative studies on albino and pigmented rodents. Brain Research 1986; 369: 365–368
  • Olcese J., Reuss S., Semm P. Geomagnetic field detection in rodents. Life Sciences 1988; 42: 605–613
  • Olcese J., Reuss S., Vollrath L. Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonon synthesis in the rat. Brain Research 1985; 333: 382–384
  • Olsen R. W. GABA-benzodiazepine-barbiturate receptor interactions. Journal of Neurochemistry 1981; 37: 1–13
  • Ossenkopp K. P., Cain D. P. Inhibitory effects of acute exposure to low-intensity 60-Hz magnetic fields on electrically kindled seizures in rats. Brain Research 1988; 442: 255–260
  • Ossenkopp K. P., Cain K. P., Smith S. Low intensity 60-Hz magnetic fields and epilepsy: reduced incidence of lethal pentylenetetrazol induced seizures in rats pre-exposed to magnetic fields. Society for Neuroscience 1985; 11: 1280, (abstract)
  • Ossenkopp K. P., Kavaliers M., Hirst M. Reduced nocturnal morphine analgesia in mice following a geomagnetic disturbance. Neuroscience Letters 1983; 40: 321–325
  • Pazo J. H. Effects of melatonin on spontaneous and evoked neuronal activity in the mesencephalic reticular formation. Brain Research Bulletin 1979; 4: 725–730
  • Penfield W., Jasper H. Epilepsy and the functional anatomy of the human brain. Churchill, London 1964; 164
  • Philo R. Catecholamines and pinealectomy-induced convulsions in the gerbil (Meriones unguiculatus). Progress in Clinical Biological Research 1982; 92: 233–241
  • Rajaram M., Mitra S. Correlation between convulsive seizure and geomagnetic activity. Neuroscience Letters 1981; 24: 187–191
  • Reiter R. J., Blask D. E., Talbot J. A., Barnett M. P. Nature and time course of seizures associated with surgical removal of the pineal gland from parathyroidectomized rats. Experimental Neurology 1973; 38: 386–397
  • Reuss St., Semm P., Vollrath L. Different types of magnetically sensitive cells in the rat pineal gland. Neuroscience Letters 1983; 40: 23–26
  • Roldan E., Anton-Tay F. EEG and convulsive threshold changes produced by pineal extract administration. Brain Research 1968; 11: 238–245
  • Romijn H. J. The pineal, a tranquilizing organ?. Life Sciences 1978; 23: 2257–2274
  • Rose D. F., Ducla-Soares R. Comparison of electroencephalography and magnetoencepha-lography. Magnetoencephalography, S. Sato. Raven Press, New York 1990; vol 54: 33–37
  • Rose F. F., Ducla-Soares E., Sato S., Kufka C. V. MEG measurement of a subdural dipole in a patient. Epilepsia 1988; 5: 656
  • Rose D. F., Smith P. D., Sato S. Magnetoencephalography and epilepsy research. Science 1987; 238: 329–335
  • Rosen A. D., Lubowsky J. Magnetic field influence on central nervous system function. Experimental Neurology 1987; 95: 679–687
  • Rosenstein R. E., Cardinali D. P. Melatonin increases in vivo GABA accumulation in rat hypothalamus, cerebellum, cerebral cortex and pineal gland. Brain Research 1986; 398: 403–406
  • Rudolph K., Krauchi K., Wirtz-Justice A., Freer H. Weak 5-Hz electromagnetic fields activate rat open field behavior. Physiology & Behavior 1985; 35: 505–508
  • Rudolf K., Wirz-Justice A., Krauchi K., Freer H. Static magnetic fields decrease nocturnal pineal cAMP in the rat. Brain Research 1988; 446: 159–160
  • Sandyk R., Anninos P. A., Tsagas N., Derpapas K. Pineal calcification and responsiveness to artificial magnetic stimulation in epileptic patients. International Journal of Neuroscience., (this issue)
  • Sandyk R., Bamford C. R. Baclofen responsive posttraumatic epilepsy. International Journal of Neuroscience 1987; 37: 183–185
  • Sato S., Rose D., Porter R. Single magnetic spike mapping. Biomagnetism: applications and theory, H. Weinberg, G. Stroink, T. Katila. Pergamon Press, New York 1985; 261–263
  • Semm P. Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comparative Biochemistry and Physiology 1983; 76A: 683–689
  • Semm P., Schneider T., Vollrath L. Effects of an earth-strength magnetic field on electrical activity of pineal cells. Nature 1980; 288: 607–608
  • Semm P., Vollrath L. Alterations in the spontaneous activity of cells in the guinea pig pineal gland and visual system produced by pineal indoles. Journal of Neural Transmission 1982; 53: 265–275
  • Semm P., Nohr R., Demaine C., Wiltschko W. Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon's brain. Journal of Comparative Physiology 1982; 155: 283–288
  • Smith D. B., Sidman R. D., Flanigin H. A reliable method for localizing deep intracranial sources of the EEG. Neurology 1985; 35: 1702–1707
  • Snead O. C., Bearden L. J. Anticonvulsants specific for petit mal antagonize epileptogenic effect of Leucine enkephalin. Science 1980; 210: 1031–1033
  • Snead O. C., Stephens H. The ontogeny of seizures induced by leucine-enkephalin and beta-endorphin. Annals of Neurology 1984; 15: 594–598
  • Spencer S. S. Depth electroencephalography in selection of refractory epilepsy for surgery. Annals of Neurology 1981; 9: 207–214
  • Sperber D., Dransfield K., Maret G., Weisenseel M. H. Oriented growth of pollen tubes in strong magnetic field. Naturwissenschaften 1981; 68: 40–43
  • Stone W. S., Egleton C. E., Berman R. F. Opiate modification of amygdaloid-kindled seizures in rats. Pharmacology, Biochemistry and Behavior 1982; 16: 751–756
  • Stoupel E., Keret R., Assa S., Kaufman H., Shimshoni M., Laron Z. Secretion of growth hormone, prolactin and corticosteroids during different levels of geomagnetic activity. Neuroendocrine Letters 1983; 5: 365
  • Sugden D. Psychopharmacological effects of melatonin in mouse and rat. Journal of Pharmacology and Experimental Therapeutics 1983; 227: 587–591
  • Sutherling W. W., Barth D. S. Magnetoencephalography in clinical epilepsy studies. The UCLA experience. Magnetoencephalography, S. Sato. Raven Press, New York 1990; vol 54: 231–245
  • Sutherling W. W., Crandall P. H., Cahan L. D., Barth D. S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy. Neurology 1988; 38: 778–786
  • Sutherling W. W., Crandall P. H., Engel J., Darcey T. M., Cahan L. D., Barth D. S. The magnetic field of complex partial seizures agrees with intracranial localizations. Annals of Neurology 1987; 21: 548–558
  • Tortella F. C., Long J. B., Holaday J. W. Endogenous opioid systems: physiological role in the self-limitation of seizures. Brain Research 1985; 332: 174–178
  • Trock D. H., Bollet A. J., Dyer R. H., Fielding L. P., Miner W. K., Markoll R. (1991) Treatment of painful arthritic conditions with pulsed extremely low frequency (ELF) magnetic fields. Presented at the Sixth Annual Research Meeting, Danbury Hospital. May, 81991
  • Van Gelder N. M. Antagonism by taurine of cobalt induced epilepsy in cat and mouse. Brain Research 1972; 47: 157–165
  • Venkatraman K. Epilepsy and solar activity. An hypothesis. Neurology (India) 1976; 24: 1–5
  • Weinberg H., Brickett P., Coolsma F., Baff M. Magnetic localization of intracranila dipoles: stimulation with a physical model. Electroencephlalography and Clinical Neurophysiology 1986; 64: 159–170
  • Welker H. A., Semm P., Willig R. P., Commentz J. C., Wiltschko W., Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Experimental Brain Research 1983; 50: 426–432
  • Wever R. Einfluss Schwacher Elektro-magnetischer Felder auf die Circadiane Periodik des Menschen. Naturwissenschafien 1968; 55: 29–32
  • Weiser H. G., Elger C. E. Presurgical evaluation of epileptics. Springer Verlag, Berlin 1987

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.