9
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Serotonergic and Serotonin-Synthesizing Cells of the Xenopus Retina

Pages 67-73 | Received 12 May 1994, Published online: 07 Jul 2009

References

  • Brunken W. J., Jin X. T., Pis‐Lopez A. M. The properties of the serotonergic system in the retina. Progress in retinal research, N. N. Osborne, G. J. Chader. Pergamon Press, Oxford 1993; 12: 75–91
  • Bruun A., Ehinger B., Sytsma V. M. Neurotransmitter localization in the skate retina. Brain Research 1984; 295: 233–248
  • Cotton R. G. H., McAdam W., Jennings I., Morgan F. J. A monoclonal antibody to aromatic amino acid hydroxylases. Biochemical Journal 1988; 255: 193–196
  • Frederick J. M., Rayborn M. E., Hollyfield J. G. Serotoninergic neurons in the retina of Xenopus laevis: Selective staining, identification, development and content. Journal of Comparative Neurology 1989; 281: 516–531
  • Gábriel R., Zhu B. S., Straznicky C. Synaptic contacts of serotonin‐like immunoreactive and 5,7‐dihydroxytryptamine‐accumulating neurons in the anuran retina. Neuroscience 1993; 54: 1103–1114
  • Green J. P. Histamine and serotonin. Basic neurochemistry: molecular, cellular and Medical aspects, G. J. Siegel. Raven Press, New York 1989; 253–269
  • Haan E. A., Jennings I. G., Cuello A. C., Nakata H., Fujisawa H., Chow C. W., Kuhinsky R., Brittigham J., Cotton R. G. H. Identification of serotonergic neurons in human brain by a monoclonal antibody to aromatic amino acid hydroxylases. Brain Research 1988; 426: 19–27
  • Hurd L. B., II, Eldred W. D. Synaptic microcircuitry of bipolar and amacrine cells with serotonin‐like immunoreactivity in the retina of the turtle. Pseudemys scripta elegans. Visual Neuroscience. 1993; 10: 455–472
  • Kapadia S. E., DeLanerolle N. C., Lamotte C. C. Immunocytochemical and electronmicroscopic study of serotonin neuronal organization in the dorsal raphe nucleus of the monkey. Neuroscience 1985; 1881–1891
  • Marc R. E. Spatial organization of neurochemically identified interneurons of the goldfish retina. I. Local patterns. Vision Research 1982; 22: 589–608
  • Marc R. E., Liu W. ‐L. S., Scholz K., Muller J. F. Serotonergic and serotonin‐accumulating neurons in the Goldfish retina. Journal of Neuroscience 1988; 8: 3427–3450
  • Massey S. C., Mills S. L., Marc R. E. All indoleamine‐accumulating cells in the rabbit retina contain GABA. Journal of Comparative Neurology 1992; 332: 275–291
  • Negishi K., Teranishi T. Sequential course of uptake of intravitreal 5,7‐dihydroxytryptamine by carp retinal cells. Brain Research 1990; 508: 135–141
  • Nishida K., Ueda S., Sano Y. Immunohistochemical studies of masked indoleamine cells in the area postrema of the rat. Histochemistry 1985; 82: 101–106
  • Osborne N. N. Retinal serotonin and the co‐occurrence with other neurotransmitters. Neuronal serotonin, N. N. Osborne, M. Hamon. J. Wiley and Sons, Chichester 1988; 129–152
  • Osborne H. H., Ghazi H. 5‐HT1A receptors positively coupled to C‐AMP‐formation in the rabbit retina. Neurochemistry International 1991; 19: 407–411
  • Osborne N. N., Nesselhut T., Nicholas D. A., Patel S., Cuello A. C. Serotonergic neurones in vertebrate retinas. Journal of Neurochemistry 1982; 39: 1519–1528
  • Quay W. B. Indole‐derivates of pineal and related neural and retinal tissues. Pharmacological Reviews 1965; 17: 321–345
  • Sandell J. H., Masland R. H. Indoleamine‐accumulation by retinal neurons exposed to blood. Histochemistry 1989; 92: 57–60
  • Schütte M., Schlemermeyer E. Depolarization elicits, while hyperpolarization blocks uptake of endogenous glutamate by retinal horizontal cells of the turtle. Cell & Tissue Research 1993; 274: 553–558
  • Schütte M., Witkovsky P. Serotonin‐like immunoreactivity in the retina of the clawed frog Xenopus laevis. Journal of Neurocytology 1990; 19: 504–518
  • Schütte M., Witkovsky P. Dopaminergic interplexform cells and centrifugal fibers in the Xenopus retina. Journal of Neurocytology 1991; 20: 195–207
  • Stone S., Schütte M. Physiological and morphological properties of OFF‐ and ON center bipolar cells in the Xenopus retina: effects of glycine and GABA. Visual Neuroscience 1991; 7: 363–376
  • Takeuchi Y. Distribution of serotonin neurons in the mammalian brain. Neuronal serotonin, N. N. Osborne, M. Hamon. Wiley and Sons, Chichester 1988; 25–56
  • Törk I. Anatomy of the serotonergic system. The Neuropharmacology of the serotonergic system. Annals of the New York Academy of Science, P. M. Whittaker‐Azmitia, S. J. Peroutka, 1989; 9–35
  • Weiler R., Schütte M. Morphological and pharmacological analysis of putative serotonergic bipolar and amacrine cells in the retina of a turtle. Pseudemys scripta elegans. Cell and Tissue Research 1985a; 241: 373–382
  • Weiler R., Schütte M. Kainic acid induced relese of serotonin from OFF‐center bipolar cells in the turtle retina. Brain Research 1985b; 360: 379–383
  • Welsh J. H. The quantitative distribution of 5‐hydroxytryptamine in the nervous system, eyes and other organs of some vertebrates. Comparative Neurochemistry, Proceedings of the 5th. International Neurochemistry Symposium. Pergamon Press, Oxford 1964; 355–366
  • Wiechman A. F., Hollyfield J. G. Localization of hydroxyindole‐O‐methyltransferase‐like immunoreactivity in photoreceptors and cone bipolar cells of the human retina. A light and electron microscope study. Journal of Comparative Neurology 1987; 258: 253–266
  • Wiechman A. F., Craft C. M. Localization of m‐RNA encoding the idoleamine‐synthesizing enzyme, hydroxyindole‐O‐methyltransferase, in chicken pineal gland and retina by in situhybridization. Neuroscience Letters 1993; 150: 207–211
  • Wilhelm M., Zhu B., Gábriel R., Straznicky C. Immunocytochemical identification of serotonin synthesizing neurons in the vertebrate retina: A comparative study. Experimental Eye Research 1993; 56: 231–240
  • Witkovsky P., Eldred W. D., Karten H. J. Catecholamine‐ and indoleamine‐containing neurons in the turtle retina. Journal of Comparative Neurology 1984; 228: 217–225
  • Zhu B., Gábriel R., Straznicky C. Serotonin synthesis and accumulation by neurons of the anuran retina. Visual Neuroscience 1992; 9: 377–388

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.