3
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Visual Deprivation at the Critical Period Modulates Photic Evoked Responses

, &
Pages 241-252 | Received 09 Dec 1994, Published online: 07 Jul 2009

References

  • Albee R. R., Mattsson J. L. Visual evoked response testing method for neonatal rat. Toxicology Teratology 1983; 5: 497–501
  • Angi M. R., Pucci V., Forattini F., Formentin P. A. Results of photorefractometric screening for amblyogenic defects in children aged 20 months. Behavioral Brain Research 1992; 49: 91–97
  • Antonini A., Stryker M. P. Rapid remodeling of axonal arbors in the visual cortex. Science 1993; 260: 1819–1821
  • Baker F. H., Grigg P., Von Noorden G. K. Effects of visual deprivation and strabismus of the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in normal animals. Brain Research 1974; 66: 185–208
  • Berardi N., Carmignoto G., Cremisi F., Domenici L., Maffei L., Parisi V., Pizzotusso T. NGF prevents the change in ocular dominance distribution induced by monocular deprivation in the rat visual cortex. Journal of Physiology, (London) 1991; 434: 14P
  • Berardi N., Domenici L., Parisi V., Pizzotusso T., Cellerino A., Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex. Proceeding of the Royal Society, (London B) 1993; 251: 17–23
  • Cellerino A., Siciliano R., Domenici L., Maffei L. Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in rat visual cortex. Neuroscience 1992; 51(4)749–753
  • Creel D. J., Dustman R. E., Beck E. C. Visually evoked responses in rat, guinea pig, cat, monkey and man. Experimental Neurology 1973; 40: 351–366
  • Dafny N., McClung R., Strada S. J. Neurophysiological properties of the pineal body. I. Field potentials. Life Science 1975; 16: 611–620
  • Domenici L., Berardi N., Carmignoto G., Vantini G., Maffei L. Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proceeding National Academy of Sciences, USA 1991; 88: 8811–8815
  • Domenici L., Cellerino A., Maffei L. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). II. Lateral geniculate nucleus. Proceeding of the Royal Society London B 1993; 251: 25–31
  • Dräger U. C. Observations on monocular deprivation in mice. Journal of Neurophysiology 1978; 41: 28–42
  • Dyer R. S. The use of sensory evoked potentials in toxicology. Fundamental Appl. Toxicology 1985; 5: 24–40
  • Dyer R. S., Clark C. C., Boyes W. K. Surface distribution of flash-evoked and pattern reversal-evoked potentials in hooded rats. Brain Research Bulletin 1987; 18: 227–234
  • Fifkova E. The effect of monocular deprivation on the synaptic contacts of the visual cortex. Journal of Neurobiology 1970a; 1(3)285–294
  • Fifkova E. Changes of axosomatic synapses in the visual cortex of monocularly deprived rats. Journal of Neurobiology 1970b; 2: 61–67
  • Fifkova E. The effect of unilateral deprivation on visual centres in rats. Journal of Comparative Neurology 1970c; 140: 431–438
  • Friedlander M. J., Martin K. A. C., Wassenhove-McCarthy D. Effects of monocular visual deprivation on geniculocortical innervation. Journal of Neuroscience 1991; 11: 3268–3288
  • Glass J. D. Photic evoked activity in the visual cortex of monocularly deprived cats. Experimental Neurology 1977; 55: 211–225
  • Glass J. D. Plasticity of cat visual cortex. Experimental Neurology 1980; 70: 44–51
  • Guillery R. W., Stelzner D. J. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal geniculate nucleus in the cat. Journal of Comparative Neurology 1970; 139: 413–422
  • Hendry S. H., Jones E. G. Reduction in the number of immunostained GAB Aergic neurons in deprived eye dominance columns of monkey area 17. Nature 1986; 320: 750–753
  • Hendry S. H., Jones E. G. Activity-dependent regulation of GAB A expression in visual cortex of adult monkeys. Neuron 1988; 1: 701–712
  • Hendry S. H., Jones E. G., Burstein N. Activity-dependent regulation of tachykinin-like immunoreactivity in neurons of monkey visual cortex. Journal of Neuroscience 1988; 8: 1225–1238
  • Hendry S. H., Fuchs J., Deblas A. L., Jones E. G. Distribution and plasticity of immunocytochemically localized GABA receptors in adult monkey visual cortex. Journal of Nruroscience 1990; 10: 2438–2450
  • Hendry S., Carder R. K. Organization and plasticity of GABA neurons and receptors in monkey visual cortex. Progressive Brain Research 1992; 90: 477–502
  • Herr D. W., Boyes W. K., Dyer R. S. Rat flash-evoked potential peak N160 amplitude: modulation by relative flash intensity. Physiological Behavior 1991; 49: 355–365
  • Hudnell H. K., Boyes W. K. The comparability of rat and human visual-evoked potentials. Neuroscience Biobehavioral Reviews 1991; 15(1)159–164
  • Kumar A., Schliebs R. Postnatal laminar development of cholinergic receptors, protein kinase C and dihydropyridine-sensitive calcium antagonist binding in rat visual cortex. Effect of visual deprivation. International Journal Developmental Neuroscience 1992; 10(6)491–504
  • Kumar A., Schliebs R. Postnatal ontogeny of GABA, and benzodiazepine receptors in individual layers of rat visual cortex and the effect of visual deprivation. Neurochemistry International 1993; 23(2)99–106
  • Lehmann D. Spatial analysis of human evoked potentials. Evoked Potentials, R. Q. Craco, I. Bodis-Wollner. Liss, New York 1986; 3–14
  • Le Vay S., Wiesel T. N., Hubel D. H. The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology 1980; 191: 1–51
  • Loveless N., Hari R., Hämäläinen M., Tiihonen J. Evoked responses of human auditory cortex may be enhanced by preceding stimuli. Electroencephalography Clinical Neurophysiology 1989; 74: 217–227
  • Maffei L., Berardi N., Domenici L., Parisi V., Pizzorusso T. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocular deprived rats. Journal of Neuroscience 1992; 12(12)4651–4662
  • Nakamura M., Shibasaki H., Nishida S., Neshige R. A method for real-time processing to study recovery functions of evoked potentials. IEEE Trans. Biomedical Engineering 1990; 37(7)738–740
  • Ohashi T., Norcia A. M., Kasamatsu T., Jampolsky A. Cortical recovery from effects of monocular deprivation caused by diffusion and occlusion. Brain Research 1991; 548: 63–73
  • Paxinos G., Watson C. The rat brain in stereotarix coordinates, 2nd ed. Academic Press, Sydney 1986
  • Polyak S. L. The vertebrate visual system. University of Chicago Press, Chicago 1957
  • Rigdon G. C., Boyes W. K., Dyer R. S. Effect of perinatal monosodium glutamate administration on visual evoked potentials of juvenile and adult rats. Neurotoxicology Teratology 1989; 11: 121–128
  • Rothblat L. A., Schwartz M. L., Kasdan P. M. Monocular deprivation in the rat: evidence for an age-related defect in visual behavior. Brain Research 1978; 158: 456–460
  • Rothblat L. A., Schwattz M. L. The effect of monocular deprivation on dendritic spines in visual cortex of young and adult albino rats: evidence for a sensitive period. Brain Research 1979; 161: 156–161
  • Saito T., Yamada T., Hasegawa A., Matsue Y., Emori T., Onishi H., Fuchigami T. Recovery functions of common peroneal, posterior tibial and sural nerve somatosensory evoked potentials. Electroencephalography Clinical Neurophysiology 1992; 85(5)337–344
  • Shatz C. J. L., Stryker M. P. Ocular dominance in layer IV of the cat's visual cortex and the effects of visual deprivation. Journal of Physiology 1978; 281: 267–283
  • Shatz C. J. Impulse activity and the patterning of connections during CNS development. Neuron 1990; 5: 745–756
  • Sherman S. M., Guillery K. W., Kaas J. H., Sanderson K. J. Behavioral, electrophysiological and morphological studies of binocular competition in the development of the geniculo-cortical pathways of cats. Journal of Comparative Neurology 1974; 158: 1–18
  • Singer W. Effects of monocular deprivation on excitatory and inhibitory pathways in cat striate cortex. Experimental Brain Research 1977; 30: 25–41
  • Stafford C. A. Critical period plasticity for visual function: definition in monocularly deprived rats using visually evoked potentials. Ophthalmic Physiology Optics 1984; 4(1)95–100
  • Tsumoto T., Suda K. Evidence for excitatory connections from the deprived eye to the visual cortex in monocularly deprived kittens. Brain Research 1978; 153: 150–156
  • Ugawa Y., Genba K., Shimpo T., Mannen T. Somatosensory evoked potential recovery (SEP-R) in myoclonic patients. Electroencephalography Clinical Neurophysiology 1991; 80: 21–25
  • Yinon U. L., Auerbach E. Deprivation of pattern vision studied by visual evoked potentials in the rat cortex. Experimental Neurology 1973; 38: 231–251
  • Walsh T. J., Opello K. D. Neuroplasticity, the aging brain. and Alzheimer's disease. Neurotoxicology 1992; 13: 101–110
  • Wiesel T. N., Hubel D. A. Single cell responses in striate cortex of kittens deprived of vision in one eye. Journal Neurophysiology 1963; 26: 1003–1017
  • Wiggins R. C., Fuller G. N., Dafny N. The electroretinogram of adult rats following a period of postnatal undernutrition and prolonged nutritional rehabilitation. Life Science 1980; 26: 1169–1174
  • Wiggins R. C., Fuller G. N., Dafny N. Propagation of photic evoked responses recorded from the retina, optic chiasm, lateral geniculate body, and visual cortex of the nutritionally rehabilitated rat visual system. Experimental Neurology 1982; 77: 644–653
  • Zar J. H. Biostatistical Analysis. Prentice-Hall Inc, New York 1984

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.