8
Views
1
CrossRef citations to date
0
Altmetric
Original Article

The Effect of 2-Amino-3-Arsonopropionate and 2-Amino-4-Arsonobutyrate on the Development and Maintenance of Amygdala Kindled Seizures

, &
Pages 255-267 | Received 12 Jun 1998, Published online: 07 Jul 2009

References

  • Abdul-Ghani A.-S., Attwell P. J. E., Bradfrod H. F. The antiepileptic effect of 3-aminopropylarsonate on electrically kindled amygdala. Brain Research 1996; 742: 305–312
  • Abdul-Ghani A.-S., Attwell P. J. E., Kent N. S., Bradford H. F., Croucher M. J., Jane D. E. Anti-epileplogenic & anti-convulsant activity of L-2-amino-4-phosphono-butyrate, a presynaptic glutamate receptor agonist. Bruin Research 1997a; 755: 202–212
  • Abdul-Ghani A.-S., Attwell P. J. E., Bradford H. F. The protective effect of 2-chloroadenosine against the development of amygdala kindling and on amygdala-kindled seizures. European Journal of Pharmacology 1997b; 326: 7–14
  • Akiyama K., Daigen A., Yamada N., Itoh T., Kohira I., Ujike H., Otsuki S. Long lasting enhancement of metabotropic excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the amygdala/pyriform cortex of deep prepiriform cortical kindled rats. Brain Research 1992; 569: 71–77
  • Albertson T. E., Peterson S. L., Stark L. G. Anticonvulsant drugs & their antagonism of kindled amygdaloid seizures in rats. Neuropharmacology 1980; 19(7)643–652
  • Albright P. S., Burnham W. M. Development of a new pharmacological seizure model: effects of anticonvulsants on cortical and amygdala-kindled seizures in the rat. Epilepsia 1980; 21: 681–689
  • Ali B. R. S. Enzymatic interactions with arsenical analogues of natural prodects. University of Cambridge. 1993, Ph. D. Thesis
  • Attwell P. J. E., Kaura S., Sigala G., Bradford H. F., Croucher M. J., Jane D. E., Watkins J. C. Blockade of both epileptogenesis and glutamate release by (1S,3S)-ACPD, a presynaptic glutamate receptor agonist. Brain Research 1995; 698: 155–162
  • Attwell P. J. E., Koumentaki A., Abdul-Ghani A.-S., Croucher M. J., Bradford H. F. Specific group II metabotropic glutamate receptor activation inhibits the development of kindled epilepsy in rats. Brain Research 1998a; 787(2)286–291
  • Attwell P. J. E., Singh-Kent N., Jane D. E., Croucher M. J., Bradford H. F. Anticonvulsant & glutamate release-inhibiting properties of the highly potent metabotropic glutamate receptor agonist. Brain Research 1998b, (In Press)
  • Baskys A., Malenka R. C. Trans-ACPD depresses synaptic transmission in the hippocampus. European Journal Pharmacology 1991; 193: 131–132
  • Bradford H. F., Dodd P. R. Biochemistry and basic mechanisms of epilepsy. Biochemistry and Neurological Diseases, A. N. Davison. Blackwell, Oxford 1976; 114–168, 1976
  • Bradford H. F., Peterson D. W. Current views of the pathobiochemistry of epilepsy. Molecular Aspects of Medicine 1987; 9: 119–172
  • Bradford H. F. Glutamate, GABA and Epilepsy. Progress in Neurobiology 1995; 47: 477–511
  • Cain D. P., Dosborough K. A., McKitrick D. J. Retardation of amygdala kindling by antagonism of NMDA and muscarinic cholinergic receptors. Experimental Neurology 1988; 100: 179–187
  • Cartmell J., Curtis A. R., Kemp J. A., Kendall D. A., Alexander S. P. H. Subtypes of metabotropic excitatory amino acid receptor distinguished by stereoisomers of the rigid glutamate analogue 1-aminocyclopentane-1,3-dicarboxylate. Neuroscience Letters 1993; 153: 107–110
  • Chapman A. G., Keane P. E., Meldrum B. S. Mechanism of anticonvulsant action of valproate. Progr. Neurobiology 1982; 19: 315–359
  • Chapman A. G., Graham J., Meldrum B. S. Potent oral anticonvulsant action of CPP and CPP-ene in DBA/2 mice. European Journal Pharmacology 1909; 178(1)97
  • Coutinho-Netto J., Abdul-Ghani A.-S., Collins J. F., Bradford H. F. Is glutamate a trigger factor in epileptic hyperactivity. Epilepsia 1981; 22: 289–296
  • Croucher M. J., Collins J. F., Meldrum B. S. Anticonvulsant action of excitatory amino acid antagonists. Science 1982; 216: 899–901
  • Croucher M. J., Meldrum B. S. The role of dicarboxylic amino acids in epilepsy, and the use of antagonists as antiepileptic agents. Neurotransmitters, Seizures and Epilepsy II, R. G. Fariello. Raven Press, New York 1984; 227–236
  • Croucher M. J., Bradford H. F., Sunter D. C., Watkins J. C. Inhibition of the development of electrical kindling of the prepyriform cortex by daily focal injections of excitatory amino acids antagonists. European Journal Pharmacology 1988; 152: 29–38
  • Croucher M. J., Bradford H. F. Kindling of full limbic seizures by repeated microinjections of excitatory amino acids into the rat amygdala. Brain Research 1989; 501: 58–65
  • Croucher M. J., Bradford H. F. The influence of strychnine-insensetive glycine receptor agonists and antagonists on generalized seizure thresholds. Brain Research 1991; 543: 91–96
  • Croucher M. J., Cotterell K. L., Bradford H. F. Competitive NMDA receptor antagonists raise electrically kindled generalized seizure thresholds. Neurochemistry Research 1992; 17: 409–413
  • Croucher M. J., Cotterell K. L., Bradford H. F. Amygdaloid kindling by repeated focal N-methyl-D-aspartate administration: comparison with electrical kindling. European Journal of Pharmacology 1995; 286: 265–271
  • Curtis D. R., Watkins J. C. Analogues of glutamic acid and GABA having potent actions on mammalian neurons. Nature 1961; 191: 1010
  • Dixon H. B. F. The artificial biochemistry of arsenic, especially arsonic acids. Advances in Inorganic Chemistry 1996, (In Press)
  • Durmuller N., Craggs M., Meldrum B. S. The effect of the non-NMDA receptor antagonist GYK1 52466 and VBQX and the competitive receptor antagonist D-CPPene on the development of amygdala-kindled seizures. Epilepsy Research 1994; 17: 167–174
  • Goddard G., McIntyre D., Leech C. A permanent change in brain function resulting from daily electrical stimulation. Expl. Neurology 1969; 25: 295–330
  • Jung M. J., Lippert B., Metcalf B. W., Bohlen P., Schechter B. J. μ-Vinyl GABA (4- amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: Effect on brain GABA metabolism in mice. Journal Neurochemistry 1977; 29: 797–802
  • Kaura S., Bradford H. F., Young A. M. J., Croucher M. J., Hughes P. D. Effects of amygdaloid kindling on the content and release of amino acids from the amygdaloid complex: In vitro and in vivo studies. J. Neurochem. 1994; 65: 1240–1249
  • Kerr D. I., Ong J., Prager R. H. Antagonism of GABAB-receptor-mediated responses in guinea-pig isolated ileum and vas deferens by phosphono-analogues of GABA. Brain Journal of Pharmacology 1990; 99(2)422–426
  • Lacoste A.-M., Dumora C., Ali B. R. S., Neuzil E., Dixon H. B. F. Utilization of 2- amino ethyl arsonic acid in Pseudomonas aeruginosa. Journal of General Microbiology 1992; 138: 1283–1287
  • Meldrum B. S., Croucher M. J., Badman G., Collins J. F. Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon. Papio Papio Neuroscience Letters 1983; 39: 101–104
  • Meldrum B. S., Braestrup C. GABA and the anticonvulsant action of benzodiazepines and related drugs. Actions and Interactions of GABA and Benzodiazepines, N. G. Bowery. Raven Press, New York 1984; 133–153
  • Meldrum B. S. GABAergic mechanisms in the pathogenesis and treatment of epilepsy. British Journal Clinical Pharmacology 1989; 27: 3–11, (Supp. 1)
  • Meldrum B. S., Chapman A. G., Patel S., Swan J. Competetive NMDA antagonists as drugs. The NMDA Receptors, J. C. Watkins, G. L. Collingridge. Oxford Univ. Press. 1989; 207
  • Patel S., Chapman A. G., Graham J. L., Meldrum B. S., Fray P. Anticonvulsant activity of the NMDA antagonists, D-(-)4-(3 phosphonopropyl) piperazine-2-carboxylic acid (D-CPP) and D-(-)(E)-4-(3-phosphonoprop-2-enyl) piperazine-2-carboxylic acid (D-CPPene) in a rodent and a primate model of reflex epilepsy. Epilepsy Research 1990; 7: 3–10
  • Peterson D. W., Collins J. F., Bradford H. F. The kindling amygdala model of epilepsy: anticonvulsant action of amino acid antagonists. Brain Research 1983; 275: 169–172
  • Pook P. C. K., Sunter D. C., Udvarhelyi P. M., Watkins J. C. Evidence for presynaptic depression of monosynaptic excitation in neonatal rate motoneurons by (1S,3S)- and (1S,3R)-ACPD. Experimental Physiology 1992; 77: 529–532
  • Racine R. J. Modification of seizure activity by electrical stimulation II. Motor seizure. Electroencephalogr, Clinical, Neurophysiology 1972; 32: 281–294
  • Rainnie D. G., Shinnick-Gallagher P. Trans-ACPD and L-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA). Neuroscience Letters 1992; 139: 87–91
  • Ribak C. E., Harris A. B., Vaughn J. E., Roberts E. Inhibitory GABAergic nerve terminals decrease at sites of focal epilepsy. Science 1979; 205: 211–214
  • Roberts E. GABA-related phenomena, models of nervous system function, and seizures. Ann. Neurology 1984; 16: 77–89, (Suppl.)
  • Schwark W., Haluska M. Prophylaxis of amygdala kindling-induced epileptogenesis. Comparison of a GABA uptake inhibitor and diazepam. Epilepsy Research 1987; 1: 63–69
  • Shin C., Rigsbee L. C., McNamara J. O. Anti-seizure and antiepileptogenic effect of gamma-vinyl GABA in amygdaloid kindling. Brain Research 1986; 398: 370–374
  • Wada J. Pharmacological prophylaxis in the kindling model of epilepsy. Archives Neurology 1977; 34: 389–395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.