46
Views
33
CrossRef citations to date
0
Altmetric
Original Article

What is red cell deformability?

&
Pages 13-26 | Published online: 08 Jul 2009

References

  • Bagge U., Brånemark P., Karlson R., Skalak R. Three dimensional observations of red blood cell deformation in Capillaries. Blood Cells 1980; 6: 231–237
  • Bingham E. C., Roepke R. R. The rheology of the blood IV. The fluidity of whole blood at 37°C. J. gen. Physiol 1944; 28: 131–149
  • Brinemark P. J. Intravascular anatomy of blood cell in man. Karger, Basel 1971
  • Brown G. H., Wolken J. J. Liquid crystals and biological structures. Academic Press., New York 1979
  • Bull B. S., Brailsford J. D. The relative importance of bending and shear in stabilizing the shape of the red blood cell. Blood Cells 1975; 1: 323–331
  • Bull B. S., Brailsford J. D., Korpman R. A. Red cell membrane deformability: an examination of two apparent disparate methods of measurement. Blood Cells 1977; 3: 39–54
  • Chien S., Sung K-L. P., Skalak R., Usarni S., Tozeren A. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,. Biophys. J 1978; 24: 463
  • Danielli J. F., Dawson H. A contribution to the theory of permeability of thin films. J. Cellular Com. Physiol 1935; 5: 459–508
  • Deuling J. J., Helfrich W. Red blood cell shapes as explained on the basis of curvature elasticity. Biophys. J 1976; 16: 861–868
  • Dintenfass L. Considerations of the internal viscosity of red cells and its effect on the viscosity of whole blood. Angiology 1962; 13: 333–344
  • Driessen G., Haest C. W.M., Heidtmann H., Kamp D. Effect of reduced red cell deformability on their flow velocity in capillaries of rat mesentery. Pflüg. Arch. 1980, in press
  • Driessen G., Schweiger B., Haest C. W.M., Scheidt H., Kamp D., Heidtmann H., Schmid-Schonbein H. Resistance to flow of rigidified red blood cells in capillaries. 11. Europ. Conf Microcirc. Abstract No. 31, K. Messmer, F. Hammersen, Gräfelfing. 1980
  • Driessen G., Inhoffen W., unpublished results
  • Evans E. E., Waugh R. E. Mechano-chemical study of red cell membranes. Erythrocyte mechanics and blood flow, G. R. Cokelet. A.R. Liss. Inc., New York 1980; 31–56
  • Evans E. A., Skalak R. Mechanics and thermodynamics of biomembranes: Part I. CRC Critical Reviews in Bioengineering 1979; 3: 181
  • Fischer T. M., Haest C. W.M., Stohr-Liesen M., Schmid-Schonbein H., Skalak R. On the stress-free shape of the red blood cell membrane., submitted for publication
  • Fischer T. M., Haest C. W.M., Stohr M., Kamp D., Deuticke B. Selective alteration of erythrocyte deformability by S H-reagents. Evidence for an involvement of spectnn in membrane shear elasticity. Biochim. Biophys. Acta 1978; 510: 270
  • Fischer T. M., Stohr-Liesen M., Schmid-Schonbein H. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 1978; 202: 894
  • Fung Y. C. Theoretical considerations of the elasticity of red cells and small bloodvessels. Fed. Proc 1966; 25: 1761–1772
  • Gaehtgens P., Schmid-Schönbein H., Schmidt F., Will G., Stöhr-Liesen M. Comparative microrheology of nucleated avian (NRBC) and non-nucleated human (HRBC) erythrocytes during viscometric small tube flow. Abstracts Part II of the Second World Congress for Microcirculation. La Jolla, California 1979
  • Gaehtgens P., Schmidt F., Will G. Comparative rheology of nucleated and non-nucleated red blood cells. I. Microrheology of avian erythrocytes during capillary flow. Pflüg. Arch., submitted
  • Gaehtgens P., Will G., Schmidt T. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cell suspenslons in narrow capillaries. Pflüg. Arch., submitted
  • Gaehtgens P. Flow of blood through narrow capillaries: Rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 1980; 17: 183–189
  • Goldsmith H. L., Marlow J. Flow behaviour of erythrocytes. 1. Rotation and deformation in dilute suspensions. Proc. R. Soc. Lond. B 1972; 182: 569–591
  • Greenquist A. C., Shohet SB., Bernstein S. G. Marked reduction of spectrin in hereditary spherocytosis in the common house mouse. Blood 1978; 51: 1149–1155
  • Haest C. W.M., Fischer T. M., Plasa G., Deuticke B. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness. Blood Cells 1980; 6: 539–553
  • Haest C. W.M., Driessen G., Kamp D., Heidtmann H., Fischer Th., Stöhr-Liesen M. Is deformability a parameter for the rate of elimination of erythrocytes from the circulation?. Pflüg. Arch. 1980, in press
  • Haest C. W.M., Plasa G., Kamp D., Deuticke B. Spectrin as astabilizer of the phospholipid asymmetry in the human erythrocyte membrane. BBA 1978; 509: 21–32
  • Heidtmann H., Driessen G., Haest C. W.M., Kamp D., Schmid-Schönbein H. The influence of rheological factors on the recovery of the microcirculation following arterial hypotension. Microvasc. Res 1979; 18: 449
  • Hochmuth R. M. Viscoelastic solid behavior of red cell membrane. Erythrocyte Mechanics and Blood Flow, G. R. Cokelet. A.R. Liss Inc., New York, 57–73
  • Kiesewetter H., Dauer U., Gesch M., Seiffge D., Angelkort B., Schmid-Schönbein H. A method for the measurement of the red blood cell deformability in the microclrculation. Scand. J. clin. Lab. Invest., 41: 229–231, Suppl. 156, this symposium
  • Kiesewetter H., Schmid-Schönbein H., Radtke H., Stolwerk G. In vim demonstration of collateral blood viscidation: Flow measurements in a model of vascular networks. Microvasc. Res 1979; 17: 12
  • Kiesewetter H., Kotitschke G., Schmid-Schönbein H. Yield Stress Measurements in red cell suspensions. Pflüg. Arch 1978; 373, (Suppl.) Abstr. 49, Meeting
  • La Celle P. L., Evans E. A., Hockmuth R. M. Erythrocyte membrane elasticity, fragmentation and lysis. Blood Cells 1977; 3: 335–350
  • Miyamoto A., Moll W. Measurements of dimensions and pathways of red cell in rapidly frozen lungs in situ. Resp. Physiol 1971; 12: 141–156
  • Pdlmer A. A. Hemodynamics of the microcirculation. Hemodynamics and the blood vessel wall, W. E. Stehbens, 157
  • Rand R. P.V. Mechanical properties of the red cell membrane. II. Viscoelastic breakdown of the membrane. Biophys. J 1964; 4: 303–316
  • Reid H. L., Barnes A. J., Loch P. J., Dormandy J. A., Dormandy T. L. A simple method for measuring erythro-cyte deformability. J. Clin. Path 1976; 29: 855–859
  • Schmid-Schönbein H., Gaehtgens P., Stöhr-Liesen M., Glahé J. Orientation, deformation and membrane tank treading in capillary flow. Proc. Intern. Union Physiol. Sci. Congress Budapest (Hungary) 1980; Vol. 14-28: 686, Abstr. 3064
  • Schmid-Schönbein H., Wells R. Fluid drop-like transition of erythrocytes under shear. Science 1969; 165: 288–291
  • Schmid-Schönbein H., Fischer T. M., Haest C. W.M., Deutickc B. Spectrin, red cell shape and red cell deformability. Blut, to be published
  • Schmid-Schönbein H. Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation. Int. Rev. Physiol 1976; 9
  • Schmid-Schönbein H. Factors promoting and factors preventing the fluidity of blood. Microcirculation: current concepts, R. M. Effros, H. Schmid-Schönbein, J. Ditzel. Academic Press, New York 1981
  • Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science 1972; 175: 720–731
  • Skalak R. Physical and mathematical models of blood flow: theoretical analysis. Erythrocyte mechanics and blood flow, G. R. Cokelet, H. J. Meiselm an, D. E. Brooks. A.R. Liss, Inc., New York, 149–164
  • Teitel P. Polymicroviscometry (PMV) of spectrin cross-linked red blood cells, theoretical and clinical implications. Scand. J. din. Lab. Invest, 41: 235–237, Suppl. 156, this symposium
  • Tosteson D. C., Hoffmann J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. gen. Physiol 1960; 44: 169–194
  • Trapp R., Schmid-Schönbein H., Thaer A. Measuring RBC-deformability by microdifractometry in the rheo-scope. Scand. J. clin. Lab. Invest, 41: 233–234, Suppl. 156
  • Zarda P. R., Chien S., Skalak R. Elastic deformations of red blood cells. J. Biomechanics 1977; 10: 211–221

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.