6
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Role of liver peroxisomes in bile acid formation: Inborn error of C27-steroid side chain cleavage in peroxisome deficiency (Zellweger syndrome)

Pages 1-10 | Published online: 08 Jul 2009

References

  • Palmer R H. Bile salts and the liver. Progress in Liver Diseases, H Popper, F Schaffner. Grune & Stratton Inc, New York 1982; 221–42
  • Small D M. The physical chemistry of cholanic acids. The Bile Acids, P P Nair, D Kritchevsky. Plenum Press, New York 1972; vol I: 249–356
  • Hoffman A F, Makhjian H S. Bile acids and the intestinal absorption of fat and electrolytes in health and disease. The Bile Acids, P P Nair, D Kritchevsky. Plenum Press, New York 1973; vol II: 103–52
  • Bloch K, Berg B N, Rittenberg D. The biological conversion of cholesterol to cholic acid. J Biol Chem 1943; 149: 511–17
  • Björkhem I. Mechanism of bile acid biosynthesis in mammalian liver. Comprehensive Biochemistry. Elsevier Scientific Publishing Co, Amsterdam 1985; Vol 12: 231–78
  • Bjorkhem I, Danielsson H. 7α-Hydroxylation of exogenous and endogenous cholesterol in rat-liver microsomes. Eur J Biochem 1975; 53: 63–70
  • Mitropoulos K A, Venkatesan S, Balasub-Ramaniam S, Peters T J. The submicro-somal localization of 3-hydroxy-3-methyl-glutaryl-coenzyme-A reductase, cholesterol 7a-hydroxylase and cholesterol in rat liver. Eur J Biochem 1978; 82: 419–29
  • Danielsson H, Einarsson K. On the conversion of cholesterol to 7α,12α-dihydroxycholest-4-en-3-one. Bile acids and steroids 168. J Biol Chem 1966; 241: 1449–54
  • Berséus O. Conversion of cholesterol to bile acids in rat: purification and properties of a delta 4–3-ketosteroid 5β-reductase and a 3a-hyroxysteroid dehydrogenase. Bile acids and steroids 187. Eur J Biochem 1967; 2: 493–502
  • Björkhem I, Gustafsson J. Mitochondrial omega-hydroxylation of cholesterol side chain. J Biol Chem 1974; 249: 2528–35
  • Oftebro H, Saarem K, Björkhem I, Pedersen J I. Side chain hydroxylation of C27-steroids and vitamin D3 by a cytochrome P-450 enzyme system isolated from human liver mitochondria. J Lipid Res 1981; 22: 1254–64
  • Prydz K, Kase B F, Bjorkhem I, Pedersen J I. Subcellular localization of 3x,7a-dihydroxy- and 3α,7α,12α-trihydroxy-5β-cholestanoyl-coenzyme A ligase(s) in rat liver. J Lipid Res 1988; 29: 997–1005
  • Masui T, Staple E. The formation of bile acids from cholesterol. The conversion of 5β-cholestane-3α, 7α, 12α-triol-26-oic acid to cholic acid via 5β-cholestane-3a, 7α, 12α, 24-tetraol-26-oic acid by rat liver. J Biol Chem 1966; 241: 3889–93
  • Gustafsson J. Biosynthesis of cholic acid in rat liver: formation of cholic acid from 3α, 7α, 12α-trihydroxy- and 3α,7α,12α,24-tetrahydroxy-5β-cholestanoic acids. Lipids 1980; 15: 113–21
  • Pedersen J I, Gustafsson J. Conversion of 3α,7α,12α -trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Lett 1980; 121: 345–48
  • Killenberg P G. Measurement and subcellular distribution of cholyl-CoA synthetase and bile acid-CoA: amino acid N-acyl-transferase activities in rat liver. J Lipid Res 1978; 19: 24–31
  • Kase B F, Prydz K, Björkhem I, Pedersen J I. Conjugation of cholic acid with taurine and glycine by rat liver peroxisomes. Bio-chem Biophys Res Comm 1986; 138: 167–73
  • Shefer S, Cheng F W, Dayal B, Hauser S, Tint G S, Salen G, Mosbach E H. A 25-hydroxylation pathway of cholic acid biosynthesis in man and rat. J Clin Invest 1975; 57: 897–903
  • Swell L, Gustafsson J, Schwartz C C, Halloran L G, Danielsson H, Vlahcevic Z R. An in vivo evaluation of the quantitative significance of several potential pathways to cholic acid and chenodeoxy-cholic acid from cholesterol in man. J Lipid Res 1980; 21: 455–66
  • DeDuve C. Functions of microbodies (peroxisomes). J Cell Biol 1965; 27: 25A–26A
  • Hashimoto T. Individual peroxisomal β-oxidation enzymes. Ann NY Acad Sci 1982; 386: 5–12
  • Hajra A K, Bishop J E. Glycerolipid biosynthesis in peroxisomes via the acyl di-hydroxyacetone phosphate pathway. Ann NY Acad Sa 1982; 386: 170–81
  • Demopoulos C A, Pinckard R N, Hanahan D J. Platelet-activating factor: evidence for l-0-alkyl-2-acetyl-sn-glyceryl-3-phos-phorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem 1979; 254: 9355–8
  • Trijbels J, Monnens L, Bakkeren J, van Raay-Selten A. Biochemical studies in the cerebrohepato-renal syndrome of Zellweger: a disturbance in the metabolism of pipecolic acid. J Inher Metab Dis 1979; 2: 39–42
  • Vamecq J, van Hoof F. Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem J 1984; 221: 203–11
  • Skjeldal O, Stokke O. Defective phytanic acid oxidase in neonatal adrenoleuko-dystrophy. J Neurology 1985; 232(Suppl. 289)
  • Bowen P, Lee C, Zellweger H, Lindenberg R. A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp 1964; 114: 402–14
  • Opitz J, Zu Rhein G, Vitale L, Shahidi N, Howe J, Chou S, Shanklin D, Sybers H, Dood A, Gerritsen T. The Zellweger syndrome (cerebro-hepato-renal syndrome). 1969; vol V: 144–58, Birth Defects: the original article series No. 2
  • Goldfischer S, Moore C, Johnson A, Spiro A, Valsamis M, Wisniewski H, Ritch R, Norton W, Rapin I, Gartner L. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 1973; 182: 62–4
  • Kelley R I. Review: The cerebrohepato-renal syndrome of Zellweger, morphological and metabolic aspects. Am J Med Gen 1983; 16: 503–17
  • Zellweger H. The cerebro-hepato-renal (Zellweger) syndrome and other peroxisomal disorders. Developmental Medicine and Child Neurology 1987; 29: 821–9
  • Eyssen H, Parmentier G, Compernolle F, Boon J, Eggermont E. Trihydroxy-coprostanic acid in the duodenal fluid of two children with intrahepatic bile duct anomalies. Biochim Biophys Acta 1972; 273: 212–21
  • Hanson R, Szczepanik-van Leeuwen P, Williams G, Grabowski G, Sharp H. Defects of bile acid synthesis in Zellweger's syndrome. Science 1979; 203: 1107–8
  • Monnens L, Bakkeren J, Parmentier G, van Haelst U, Trijbels J, Eyssen H. Disturbances in bile acid metabolism of infants with the Zellweger (cerebrohepato-renal) syndrome. Eur J Pedatr 1980; 133: 31–5
  • Parmentier G, Janssen G A, Eggermont E A, Eyssen E J. C27 Bile acids in infants with coprostanic acidemia and occurrence of a 3α, 7α, 12α -trihydroxy-5β-C29 dicarboxylic bile acid as a major component in their serum. Eur J Biochem 1979; 102: 173–83
  • Kase B F, Björkhem I, Pedersen J I. Formation of cholic acid from 3α, 7α 12α-trihydroxy-5β-cholestanoic acid by rat liver peroxisomes. J Lipid Res 1983; 24: 1560–7
  • Björkhem I, Kase B F, Pedersen J I. Mechanism of peroxisomal 24-hydroxy-lation of 3α, 7α, 12α -trihydroxy-5β-cholestanoic acid in rat liver. Biochim Biophys Acta 1984; 796: 142–5
  • Kase B F, Prydz K, Björkhem I, Pedersen J I. In vitro formation of bile acids in human liver peroxisomes. Biochem Biophys Acta 1986; 877: 37–42
  • Kase B F, Pedersen J, Strandvik I. B, Björkhem I. In vivo and in vitro studies on formation of bile acids in patients with the Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid. J Clin Invest 1985; 76: 2393–2402
  • Kase B F, Björkhem I, Hågå P, Pedersen J I. Defective peroxisomal cleavage of the C27-steroid side chain in the cerebro-hepato-renal syndrome of Zellweger. J Clin Invest 1985; 75: 427–35
  • Ek J, Kase B F, Reith A, Björkhem I, Pedersen J I. Peroxisomal dysfunction in a boy with neurologic symptoms and amaurosis (Leber disease): Clinical and biochemical findings similar to those observed in Zellweger syndrome. J Pediatrics 1986; 108: 19–24
  • Prydz K, Kase B F, Björkhem I, Pedersen J I. Formation of chenodeoxycholic acid from 3a,7a-dihydroxy-5fJ-cholestanoic acid by rat liver peroxisomes. J Lipid Res 1986; 27: 622–8
  • Lazarow P B. Rat liver peroxisomes catalyze the β-oxidation of fatty acids. J Biol Chem 1978; 253: 1522–8
  • Tager J M, Van Der Beek W A, Wanders R JA, Hashimoto T, Heymans H SA, Van Den Bosch H, Schutgens R BH, Schram A W. Peroxisomal β-oxidation enzyme proteins in the Zellweger syndrome. Biochem Biophys Res Commun 1985; 126: 1269–75
  • Trijbels J MF, Berden J A, Monnens L AH, Willems J L, Jansen A JM, Schutgens R BH, Van Den Broek-Van Essen M. Biochemical studies in the liver and muscle of patients with Zellweger syndrome. Pediatr Res 1983; 17: 514–7
  • Björkhem I, Kase B F, Pedersen J I. Role of peroxisomes in the biosynthesis of bile acids. Scand J Clin Lab Invest 1985; 177(45 Suppl)23–31
  • Hanson R F, Klein P D, Williams G C. Bile acid formation in man: metabolism of 7α-hydroxy-4-cholesten-3-one in bile fistula patients. J Lipid Res 1973; 14: 50–3
  • Swell L, Gustafsson J, Danielsson H, Schwartz C C, Vlahcevic Z R. Biosynthesis of bile acids in man. An in vivo evaluation of the conversion of R and S 3α, 7α, 12α-trihydroxy-5β-cholestanoic and 3α,7α,12α, 24-tetrahydroxy-5β-cholestanoic acids to cholic acid. J Biol Chem 1981; 256: 912–6
  • Björkhem I, Liljeqvist L, Nilsell K, Einarsson K. Oxidoreduction of different hydroxyl groups in bile acids during their enterohepatic circulation in man. J Lipid Res 1986; 27: 177–82
  • Watkins J B, Ingall D, Szczepanik P, Klein P D, Lester R. Bile salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technic. N Eng J Med 1973; 288: 431–4
  • Heubi J E, Balistreri W F, Suchy F J. Bile salt metabolism in the first year of life. J Lab Clin Med 1982; 100: 127–36
  • Lee M J, Whitehouse M W. Inhibition of electron transport and coupled phosphorylation in liver mitochondria by cholanic (bile) acids and their conjugates. Biochem Biophys Acta 1965; 100: 317–28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.