41
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Intracellular calcium signalling in striated muscle cells

&
Pages 559-568 | Received 28 Jul 1997, Accepted 08 Sep 1997, Published online: 08 Jul 2009

References

  • Siesjö BK, Siesjö P. Mechanisms of secondary brain injury. Eur J Anaesthesiol 1996; 13: 247–68
  • Pierce G, Czubryt N.MP. The contribution of ionic imbalance to ischemia/reperfusion-induced injury. J Mol Cell Cardiol 1995; 27: 53–63
  • Hardingham G, Chawla E.S, Johnson C M, Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 1997; 385: 260–5
  • Gerasimenko OV, Gerasimenko J V, Tepikin A, Petersen V.OH. Calcium transport pathways in the nucleus. Pflugers Arch 1996; 432: 1–6
  • Lee S-L, Yu A SL, Lytton J. Tissue-specific expression of Na+-Ca2+exchanger isoforms. J Biol Chem 1994; 269: 14849–52
  • Sheu S-S, Blaustein MP. Sodium/calcium exchange and control of cell calcium and contractility in cardiac and smooth muscle. The heart and cardiovascular system, HA Fozzard, E Haber, RB Jennings, AM Katz. Raven Press, New York 1991; 903–44
  • Chapman R A, Suleiman M S, Rodrigo G C, Tunstall J. The calcium paradox: A role for [Na]ia cellular or tissue basis, a property unique to the Langendorff perfused heart? A bundle of contradictions. J Mol Cell Cardiol 1991; 23: 773–7
  • Berridge MJ. Elementary and global aspects of calcium signalling. J Physiol 1997; 499(2)291–306
  • Marks AR. Intracellular calcium-release channels: regulators of cell life and death. Am J Physiol 1997; 272: H597–H605
  • Kupferman R, Mitra P P, Hohenberg P C, Wang SS-H. Analytical calculation of intracellular calcium wave characteristics. Biophys J 1997; 72: 2430–44
  • Takamatsu T, Wier WG. Calcium waves in mammalian heart: quantification of origin, magnitude, waveform and velocity. FASEB J 1990; 4: 1519–25
  • Keizer J, Li Y X, Stojilkovic S, Rinzel J. InsP3-induced Ca2+excitability of the endoplasmic reticulum. Mol Biol Cell 1995; 6: 945–51
  • Li Y X, Keizer J, Stojilkovic S S, Rinzel J. Ca2+excitability of the ER membrane: an explanation for IP3-induced Ca2+oscillations. Am J Physiol 1995; 269: C1079–C1092
  • Sneyd J, Keizer J, Sanderson MJ. Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J 1995; 9: 1463–72
  • Joseph SK. The inositol triphosphate receptor family. Cell Signal 1996; 8: 1–7
  • Michikawa T, Miyawaki A, Furuichi T, Mikoshiba K. Inositol 1,4,5-trisphosphate receptors and calcium signaling. Crit Rev Neurobiol 1996; 10: 39–55
  • Ashley RH. Intracellular calcium channels. Essays Biochem 1995; 30: 97–117
  • Bezprozvanny I, Ehrlich BE. The inositol 1,4,5-trisphosphate (InsP3) receptor. J Membr Biol 1995; 145: 205–16
  • Shomer N H, Louis C F, Fill M, Litterer L A, Mick-elson JR. Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor. Am J Physiol 1993; 264: C125–C135
  • Pessah I N, Waterhouse A L, Casida JE. The calcium-ryanodine receptor complex of skeletal and cardiac muscle. Biochem Biophys Res Commun 1985; 128: 449–56
  • Lai F A, Meissner G. The muscle ryanodine receptor and its intrinsic Ca2+channel activity. J Bioenerg Biomembr 1989; 21: 227–46
  • Jenden D J, Fairhurst AS. The pharmacology of ryanodine. Pharmacol Rev 1969; 21: 1–25
  • Franzini-Armstrong C. Studies of the triad. J Cell Biol 1970; 47: 488–99
  • Inui M, Saito A, Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 1987; 262: 1740–7
  • Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 1989; 338: 167–70
  • Ledbetter M W, Preiner J K, Louis C F, Mickelson JR. Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J Biol Chem 1994; 269: 31544–51
  • Sutko J L, Airey JA. Ryanodine receptor Ca2+release channels: does diversity in form equal diversity in function?. Physiol Rev 1996; 76: 1027–71
  • Otsu K, Fujii J, Periasamy M, Difilippantonio M, Uppender M, Ward D C, Maclennan DH. Chromosome mapping of five humman cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics 1993; 17: 507–9
  • Chu A, Diaz-Munˆoz M, Hawkes M J, Brush K, Hamilton SL. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol Pharmacol 1990; 37: 735–41
  • Lunde P K, Sejersted OM. Ryanodine binding sites measured in small skeletal muscle biopsies. Scand J Clin Lab Invest 1997; 57: 569–80
  • Clausen T. Regulation of active Na+, K+-transport in skeletal muscle. Physiol Rev 1986; 66: 542–80
  • Lipp P, Niggli E. Submicroscopic calcium signals as fundamental events of excitation-contraction coupling in guinea-pig cardiac myocytes. J Physiol 1996; 492: 31–8
  • Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 1983; 245: C1–C14
  • Cheng H, Lederer W J, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 1993; 262: 740–4
  • Shirikova N, Rios E. Small event Ca2+release: a probable precursor of Ca2+sparks in frog skeletal muscle. J Physiol 1997; 502.1: 3–11
  • Armstrong C M, Bezanilla F M, Horowicz P. Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N, N'-tetraacetic acid. Biochim Biophys Acta 1972; 267: 605–8
  • Ríos E, Pizarro G. Voltage sensor of exitation-contraction coupling in skeletal muscle. Physiol Rev 1991; 71: 849–908
  • Ríos E, Pizarro G, Stefani E. Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. A Rev Physiol 1992; 54: 109–33
  • Marks AR. Cellular functions of immunophilins. Physiol Rev 1996; 76: 631–49
  • Knudson C M, Stang K K, Moomaw C R, Slaughter C A, Campbell KP. Primary structure and topological analysis of a skeletal musclespecific Junctional sarcoplasmic reticulum glycoprotein (Triadin). J Biol Chem 1993; 268: 12646–54
  • Caswell A H, Brandt N R, Brunschwig J-P, Purkerson S. Localization and partial characterization of the oligomeric disulfide-linked molecular weight 95000 protein (Triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles. Biochemistry 1991; 30: 7507–13
  • Zhu J Q, Howlett S E, Ferrier GR. A role for cAMP in activation of the voltage-sensitive release mechanism for cardiac contraction [Abstract]. Biophys J 1997; 72: al61
  • Levi A J, Ferrier GR. Ca release activated by membrane depolarization in the absence of Ca entrv in mammalian heart [Abstract]. Biophys J 1997; 72: al61
  • Leblanc N, Hume JR. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 1990; 248: 372–6
  • Lederer W J, Niggli E, Hadley RW. Sodium-calcium exchange in excitable cells: fuzzy space. Science 1990; 248: 283
  • Wasserstrom J A, Vites AM. The role of Na-Ca exchange in activation of excitation-contraction coupling in rat ventricular myocytes. J Physiol 1996; 493: 529–42
  • Rosenberg H. Clinical presentation of malignant hyperthermia. Br J Anaesth 1988; 60: 268–73
  • Gronert GA. Malignant hyperthermia. Anesthesiology 1980; 53: 395–423
  • Ellis K O, Castelhon A W, Honkomp L J, Wessels F L, Carpenter J F, Halliday RP. Dantrolene, a direct acting skeletal muscle relaxant. J Pharm Sci 1989; 62: 948–51
  • Nelson TE, SR. Function in malignant hyperthermia. Cell Calcium 1988; 9: 257–65
  • Harbitz I, Kristensen T, Bosnes M, Kran S, Davies W. DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615-Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian landrace pigs. Anim Genet 1992; 23: 395–402
  • Fagerlund T, Ording H, Bendixen D, Islander G, Ranklev-Twetman E, Berg K. RYR mutation G1021A (Gly341Arg) is not frequent in Danish and Swedish families with malignant hyperthermia susceptibility. Clin Genet 1996; 49: 186–8
  • Fagerlund T, Ording H, Bendixen D, Berg K. Search for three known mutations in the RYR1 gene in 48 Danish families with malignant hyperthermia. Clin Genet 1994; 46: 401–4
  • Fagerlund T, Islander G, Ranklev E, Harbitz I, Hauge J G, Mokleby E, Berg K. Genetic recombination between malignant hyperthermia and calcium release channel in skeletal muscle. Clin Genet 1992; 41: 270–2
  • Mickelson J R, Louis CF. Malignant hyperthermia: excitation-contraction coupling, Ca2-release channel, and cell Ca2+regulation defects. Physiol Rev 1996; 2: 537–92
  • Mickelson J R, Gallant E M, Litterer L A, Johnson K M, Rempel W E, Louis CF. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J Biol Chem 1988; 263: 9310–5
  • Mygland A, Tysnes O B, Aarli J A, Flood P R, Gilhus NE. Myasthenia gravis patients with a thymoma have antibodies against a high molecular weight protein in sarcoplasmic reticulum. J Neuroimmunol 1992; 37: 1–7
  • Skeie G O, Bartoccioni E, Evoli A, Aarli J A, Gilhus NE. Ryanodine receptor antibodies are associated with severe myasthenia gravis. Eur J Neurol 1996; 3: 136–40
  • Skeie G O, Lunde P K, Sejersted O M, Mygland A, Aarli JA, Gilhus NE. Myasthenia gravis sera containing anti-ryanodine receptor antibodies block binding of [3H]-ryanodine to sarcoplasmic reticulum. Muscle Nerve 1997
  • Dhalla N, Wang X, Beamish RE. Intracellular calcium handling in normal and failing hearts. Exp Clin Cardiol 1996; 1: 7–20
  • Beuckelmann D J, Nabauer M, Kruger C, Erdmann E. Altered diastolic [Ca2+]ihandling in human ventricular myocytes from patients with terminal heart failure. Am Heart J 1995; 129: 684–9
  • Del Monte F, O'Gara Poole- P, Wilson P A, Yacoub M, Harding SE. Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. Cardiovasc Res 1995; 30: 281–90
  • Figueredo V M, Camacho SA. Basic mechanisms of myocardial dysfunction: cellular pathophysiology of heart failure. Curr Opin Cardiol 1995; 10: 246–52
  • Gwathmey J K, Liao R, Helm P A, Gowriharan T, Hajjar RJ. Is contractility depressed in the failing human heart?. Cardiovasc Drugs Ther 1995; 9: 581–7
  • Capasso J M, Li P, Anversa P. Cytosolic calcium transients in myocytes isolated from rats with ischemic heart failure. Am J Physiol 1993; 265: H1953–H1964
  • Go L O, Moschella M C, Watras J, Handa K K, Fyfe B S, Marks AR. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J Clin Invest 1995; 95: 888–94
  • Gomez A M, Valdivia H H, Cheng H, Lederer M R, Santana L F, Cannell M B, Mc Cune S A, Altschuld R A, Lederer WJ. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 1997; 276: 800–6
  • Westerblad H, Lee J A, Lännergren J, Allen DG. Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 1991; 261: C195–209
  • Allen D G, Lännergren J, Westerblad H. The role of ATP in the regulation of intracellular Ca2+release in single fibres of mouse skeletal muscle. J Physiol 1997; 498: 587–600
  • Balnave C D, Allen DG. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol 1995; 488: 25–36
  • Chin E R, Allen DG. The role of elevations in intracellular [Ca2+] in the development of low frequency fa tigue in mouse single muscle fibres. J Physiol 1996; 491: 813–24
  • Holt E, Christensen G. Transient, Ca2+overload alters Ca2+handling in rat cardiomyocytes: effects on shortening and relaxation. Am J Physiol 1997; 273: H573–82

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.