670
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Predictive biomarkers with potential of converting conventional chemotherapy to targeted therapy in patients with metastatic colorectal cancer

, , , , &
Pages 340-355 | Accepted 11 Nov 2011, Published online: 19 Dec 2011

References

  • Tournigand C, Andre T, Achille E, Lledo G, Flesh M, Mery-Mignard D, FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004;22:229–37.
  • Mechetner E, Brunner N, Parker RJ. In vitro drug responses in primary and metastatic colorectal cancers. Scand J Gastroenterol 2011;46:70–8.
  • Colucci G, Gebbia V, Paoletti G, Giuliani F, Caruso M, Gebbia N, Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 2005;23:4866–75.
  • Nielsen KV, Brunner N. Re: topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 2011;103:352–3.
  • Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 2009;101:1446–52.
  • Schrohl AS, Wurtz S, Kohn E, Banks RE, Nielsen HJ, Sweep FC, Banking of biological fluids for studies of disease-associated protein biomarkers. Mol Cell Proteomics 2008;7:2061–6.
  • Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3:330–8.
  • Aguiar S Jr, Lopes A, Soares FA, Rossi BM, Ferreira FO, Nakagawa WT, Prognostic and predictive value of the thymidylate synthase expression in patients with non-metastatic colorectal cancer. Eur J Surg Oncol 2005;31:863–8.
  • Davies MM, Johnston PG, Kaur S, Allen-Mersh TG. Colorectal liver metastasis thymidylate synthase staining correlates with response to hepatic arterial floxuridine. Clin Cancer Res 1999;5:325–8.
  • Paradiso A, Simone G, Petroni S, Leone B, Vallejo C, Lacava J, Thymidilate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients. Br J Cancer 2000;82:560–7.
  • Edler D, Glimelius B, Hallstrom M, Jakobsen A, Johnston PG, Magnusson I, Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J Clin Oncol 2002;20:1721–8.
  • Soong R, Shah N, Salto-Tellez M, Tai BC, Soo RA, Han HC, Prognostic significance of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase protein expression in colorectal cancer patients treated with or without 5-fluorouracil-based chemotherapy. Ann Oncol 2008;19:915–19.
  • Ciaparrone M, Quirino M, Schinzari G, Zannoni G, Corsi DC, Vecchio FM, Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology 2006;70:366–77.
  • Tomiak A, Vincent M, Earle CC, Johnston PG, Kocha W, Taylor M, Thymidylate synthase expression in stage II and III colon cancer: a retrospective review. Am J Clin Oncol 2001;24:597–602.
  • Allegra CJ, Paik S, Colangelo LH, Parr AL, Kirsch I, Kim G, Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes' B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol 2003;21:241–50.
  • Aschele C, Debernardis D, Casazza S, Antonelli G, Tunesi G, Baldo C, Immunohistochemical quantitation of thymidylate synthase expression in colorectal cancer metastases predicts for clinical outcome to fluorouracil-based chemotherapy. J Clin Oncol 1999;17:1760–70.
  • Aschele C, Debernardis D, Bandelloni R, Cascinu S, Catalano V, Giordani P, Thymidylate synthase protein expression in colorectal cancer metastases predicts for clinical outcome to leucovorin-modulated bolus or infusional 5-fluorouracil but not methotrexate-modulated bolus 5-fluorouracil. Ann Oncol 2002;13:1882–92.
  • Cascinu S, Aschele C, Barni S, Debernardis D, Baldo C, Tunesi G, Thymidylate synthase protein expression in advanced colon cancer: correlation with the site of metastasis and the clinical response to leucovorin-modulated bolus 5-fluorouracil. Clin Cancer Res 1999;5:1996–9.
  • Popat S, Chen Z, Zhao D, Pan H, Hearle N, Chandler I, A prospective, blinded analysis of thymidylate synthase and p53 expression as prognostic markers in the adjuvant treatment of colorectal cancer. Ann Oncol 2006;17:1810–17.
  • Jensen SA, Vainer B, Witton CJ, Jorgensen JT, Sorensen JB. Prognostic significance of numeric aberrations of genes for thymidylate synthase, thymidine phosphorylase and dihydrofolate reductase in colorectal cancer. Acta Oncol 2008;47:1054–61.
  • Jensen SA, Vainer B, Sorensen JB. The prognostic significance of thymidylate synthase and dihydropyrimidine dehydrogenase in colorectal cancer of 303 patients adjuvantly treated with 5-fluorouracil. Int J Cancer 2007;120:694–701.
  • Johnston PG, Benson AB 3rd, Catalano P, Rao MS, O'Dwyer PJ, Allegra CJ. Thymidylate synthase protein expression in primary colorectal cancer: lack of correlation with outcome and response to fluorouracil in metastatic disease sites. J Clin Oncol 2003;21:815–19.
  • Westra JL, Hollema H, Schaapveld M, Platteel I, Oien KA, Keith WN, Predictive value of thymidylate synthase and dihydropyrimidine dehydrogenase protein expression on survival in adjuvantly treated stage III colon cancer patients. Ann Oncol 2005;16:1646–53.
  • Lenz HJ, Hayashi K, Salonga D, Danenberg KD, Danenberg PV, Metzger R, p53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res 1998;4:1243–50.
  • Ichikawa W, Uetake H, Shirota Y, Yamada H, Nishi N, Nihei Z, Combination of dihydropyrimidine dehydrogenase and thymidylate synthase gene expressions in primary tumors as predictive parameters for the efficacy of fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Clin Cancer Res 2003;9:786–91.
  • Shirota Y, Stoehlmacher J, Brabender J, Xiong YP, Uetake H, Danenberg KD, ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001;19:4298–304.
  • Vallbohmer D, Yang DY, Kuramochi H, Shimizu D, Danenberg KD, Lindebjerg J, DPD is a molecular determinant of capecitabine efficacy in colorectal cancer. Int J Oncol 2007;31:413–18.
  • Johnston PG, Liang CM, Henry S, Chabner BA, Allegra CJ. Production and characterization of monoclonal antibodies that localize human thymidylate synthase in the cytoplasm of human cells and tissue. Cancer Res 1991;51:6668–76.
  • Johnston PG, Lenz HJ, Leichman CG, Danenberg KD, Allegra CJ, Danenberg PV, Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 1995;55:1407–12.
  • Popat S, Matakidou A, Houlston RS. Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol 2004;22:529–36.
  • Aschele C, Debernardis D, Tunesi G, Maley F, Sobrero A. Thymidylate synthase protein expression in primary colorectal cancer compared with the corresponding distant metastases and relationship with the clinical response to 5-fluorouracil. Clin Cancer Res 2000;6:4797–802.
  • Oi K, Makino M, Ozaki M, Takemoto H, Yamane N, Nakamura S, Immunohistochemical dihydropyrimidine dehydrogenase expression is a good prognostic indicator for patients with Dukes' C colorectal cancer. Anticancer Res 2004;24:273–9.
  • Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000;6:1322–7.
  • Koopman M, Venderbosch S, Nagtegaal ID, van Krieken JH, Punt CJ. A review on the use of molecular markers of cytotoxic therapy for colorectal cancer, what have we learned? Eur J Cancer 2009;45:1935–49.
  • Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Res Rev 2009;29:903–53.
  • Ciccolini J, Evrard A, Cuq P. Thymidine phosphorylase and fluoropyrimidines efficacy: a Jekyll and Hyde story. Curr Med Chem Anticancer Agents 2004;4:71–81.
  • Duffy MJ, van DA, Haglund C, Hansson L, Holinski-Feder E, Klapdor R, Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer 2007;43:1348–60.
  • Hsiang YH, Liu LF. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 1988;48:1722–6.
  • Pommier Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 2009;109:2894–902.
  • Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 2009;9:489–99.
  • Braun MS, Richman SD, Quirke P, Daly C, Adlard JW, Elliott F, Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 2008;26:2690–8.
  • Paradiso A, Xu J, Mangia A, Chiriatti A, Simone G, Zito A, Topoisomerase-I, thymidylate synthase primary tumour expression and clinical efficacy of 5-FU/CPT-11 chemotherapy in advanced colorectal cancer patients. Int J Cancer 2004;111:252–8.
  • Bronstein IB, Vorobyev S, Timofeev A, Jolles CJ, Alder SL, Holden JA. Elevations of DNA topoisomerase I catalytic activity and immunoprotein in human malignancies. Oncol Res 1996;8:17–25.
  • McLeod HL, Keith WN. Variation in topoisomerase I gene copy number as a mechanism for intrinsic drug sensitivity. Br J Cancer 1996;74:508–12.
  • Yu J, Miller R, Zhang W, Sharma M, Holtschlag V, Watson MA, Copy-number analysis of topoisomerase and thymidylate synthase genes in frozen and FFPE DNAs of colorectal cancers. Pharmacogenomics 2008;9:1459–66.
  • Goldwasser F, Bae I, Valenti M, Torres K, Pommier Y. Topoisomerase I-related parameters and camptothecin activity in the colon carcinoma cell lines from the National Cancer Institute anticancer screen. Cancer Res 1995;55:2116–21.
  • Bandyopadhyay K, Gjerset RA. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines. Biochemistry 2011;50:704–14.
  • Jansen WJ, Zwart B, Hulscher ST, Giaccone G, Pinedo HM, Boven E. CPT-11 in human colon-cancer cell lines and xenografts: characterization of cellular sensitivity determinants. Int J Cancer 1997;70:335–40.
  • Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR, Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci USA 2008;105:9053–8.
  • Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, Kinders RJ, Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 2009;8:1878–84.
  • Seymour MT, Maughan TS, Ledermann JA, Topham C, James R, Gwyther SJ, Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet 2007;370:143–52.
  • Koopman M, Knijn N, Richman S, Seymour M, Quirke P, van Tinteren H, The correlation between Topoisomerase-I (Topo1) expression and outcome of treatment with capecitabine and irinotecan in advanced colorectal cancer (ACC) patients (pts) treated in the CAIRO study of the Dutch Colorectal Cancer Group (DCCG). 7th ed. 2009. pp 321.
  • Koopman M, Venderbosch S, van TH, Ligtenberg MJ, Nagtegaal I, van Krieken JH, Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the phase III randomised CAIRO study. Eur J Cancer 2009;45:1999–2006.
  • Vallbohmer D, Iqbal S, Yang DY, Rhodes KE, Zhang W, Gordon M, Molecular determinants of irinotecan efficacy. Int J Cancer 2006;119:2435–42.
  • Hu ZY, Yu Q, Pei Q, Guo C. Dose-dependent association between UGT1A1*28 genotype and irinotecan-induced neutropenia: low doses also increase risk. Clin Cancer Res 2010;16:3832–42.
  • Hu ZY, Yu Q, Zhao YS. Dose-dependent association between UGT1A1*28 polymorphism and irinotecan-induced diarrhoea: a meta-analysis. Eur J Cancer 2010;46:1856–65.
  • Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D'Andrea M, The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 2006;24:3061–8.
  • Cecchin E, Innocenti F, D'Andrea M, Corona G, De ME, Biason P, Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol 2009;27:2457–65.
  • Ruzzo A, Graziano F, Loupakis F, Santini D, Catalano V, Bisonni R, Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFIRI chemotherapy. Pharmacogenomics J 2008;8:278–88.
  • Braun MS, Richman SD, Thompson L, Daly CL, Meade AM, Adlard JW, Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: the FOCUS trial. J Clin Oncol 2009;27:5519–28.
  • Cecchin E, Corona G, Masier S, Biason P, Cattarossi G, Frustaci S, Carboxylesterase isoform 2 mRNA expression in peripheral blood mononuclear cells is a predictive marker of the irinotecan to SN38 activation step in colorectal cancer patients. Clin Cancer Res 2005;11(19 Pt 1):6901–7.
  • Rouits E, Charasson V, Petain A, Boisdron-Celle M, Delord JP, Fonck M, Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer 2008;99:1239–45.
  • Davidsen ML, Wurtz SO, Romer MU, Sorensen NM, Johansen SK, Christensen IJ, TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis. Br J Cancer 2006;95:1114–20.
  • Wang T, Lv JH, Zhang XF, Li CJ, Han X, Sun YJ. Tissue inhibitor of metalloproteinase-1 protects MCF-7 breast cancer cells from paclitaxel-induced apoptosis by decreasing the stability of cyclin B1. Int J Cancer 2010;126:362–70.
  • Sorensen NM, Bystrom P, Christensen IJ, Berglund A, Nielsen HJ, Brunner N, TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin Cancer Res 2007;13:4117–22.
  • Frederiksen C, Qvortrup C, Christensen IJ, Glimelius B, Berglund A, Jensen BV, Plasma TIMP-1 levels and treatment outcome in patients treated with XELOX for metastatic colorectal cancer. Ann Oncol 2011;22:369–75.
  • Roberts JJ, Thomson AJ. The mechanism of action of antitumor platinum compounds. Prog Nucleic Acid Res Mol Biol 1979;22:71–133.
  • Woynarowski JM, Faivre S, Herzig MC, Arnett B, Chapman WG, Trevino AV, Oxaliplatin-induced damage of cellular DNA. Mol Pharmacol 2000;58:920–7.
  • Di Francesco AM, Ruggiero A, Riccardi R. Cellular and molecular aspects of drugs of the future: oxaliplatin. Cell Mol Life Sci 2002;59:1914–27.
  • Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007;33:9–23.
  • Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22:7265–79.
  • Bhagwat NR, Roginskaya VY, Acquafondata MB, Dhir R, Wood RD, Niedernhofer LJ. Immunodetection of DNA repair endonuclease ERCC1-XPF in human tissue. Cancer Res 2009;69:6831–8.
  • Labianca R, Pancera G, Cesana B, Clerici M, Montinari F, Luporini G. Cisplatin + 5-fluorouracil versus 5-fluorouracil alone in advanced colorectal cancer: a randomized study. Eur J Cancer Clin Oncol 1988;24:1579–81.
  • Kirschner K, Melton DW. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res 2010;30:3223–32.
  • Ahmad A, Robinson AR, Duensing A, van DE, Beverloo HB, Weisberg DB, ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol 2008;28:5082–92.
  • Cummings M, Higginbottom K, McGurk CJ, Wong OG, Koberle B, Oliver RT, XPA versus ERCC1 as chemosensitising agents to cisplatin and mitomycin C in prostate cancer cells: role of ERCC1 in homologous recombination repair. Biochem Pharmacol 2006;72:166–75.
  • Niedernhofer LJ, Odijk H, Budzowska M, van DE, Maas A, Theil AF, The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004;24:5776–87.
  • Arnould S, Hennebelle I, Canal P, Bugat R, Guichard S. Cellular determinants of oxaliplatin sensitivity in colon cancer cell lines. Eur J Cancer 2003;39:112–19.
  • Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006;355:983–91.
  • Kim SH, Kwon HC, Oh SY, Lee DM, Lee S, Lee JH, Prognostic value of ERCC1, thymidylate synthase, and glutathione S-transferase pi for 5-FU/oxaliplatin chemotherapy in advanced colorectal cancer. Am J Clin Oncol 2009;32:38–43.
  • Viguier J, Boige V, Miquel C, Pocard M, Giraudeau B, Sabourin JC, ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin Cancer Res 2005;11:6212–17.
  • Stoehlmacher J, Park DJ, Zhang W, Yang D, Groshen S, Zahedy S, A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer 2004;91:344–54.
  • Ruzzo A, Graziano F, Loupakis F, Rulli E, Canestrari E, Santini D, Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J Clin Oncol 2007;25:1247–54.
  • Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25:5287–312.
  • Costa RM, Chigancas V, Galhardo RS, Carvalho H, Menck CF. The eukaryotic nucleotide excision repair pathway. Biochimie 2003;85:1083–99.
  • Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 1997;16:6559–73.
  • Coin F, Bergmann E, Tremeau-Bravard A, Egly JM. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 1999;18:1357–66.
  • Hunting DJ, Gowans BJ, Dresler SL. DNA polymerase delta mediates excision repair in growing cells damaged with ultraviolet radiation. Biochem Cell Biol 1991;69:303–8.
  • Lindahl T, Barnes DE. Mammalian DNA ligases. Annu Rev Biochem 1992;61:251–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.