922
Views
29
CrossRef citations to date
0
Altmetric
Review

Contentious host–microbiota relationship in inflammatory bowel disease – can foes become friends again?

Pages 34-42 | Received 29 Aug 2014, Accepted 13 Sep 2014, Published online: 19 Dec 2014

References

  • JBurisch, TJess, MMartinato, PLLakatos; ECCO -EpiCom. The burden of inflammatory bowel disease in europe. J Crohns Colitis 2013;7:322–37.
  • SCNg, CNBernstein, MHVatn, PLLakatos, EVLoftus, Jr et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 2013;62:630–49.
  • NAMolodecky, ISSoon, DMRabi, WAGhali, MFerris, GChernoff, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012;142:46–54.
  • LJostins, SRipke, RKWeersma, RHDuerr, DPMcGovern, KYHui, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119–24.
  • BKhor, AGardet, RJXavier. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011;474:307–17.
  • MParkes, ACortes, DAvan Heel, MABrown. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 2013;14:661–73.
  • Human microbiome project website. 2014. Available from http://commonfund.nih.gov/hmp/index. Cited 13 August 2014.
  • MetaHIT website. 2014. Available from http://www.metahit.eu/index.php?id=410. Cited 13 August 2014.
  • Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207–14.
  • ELe Chatelier, TNielsen, JQin, EPrifti, FHildebrand, GFalony, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541–6.
  • CALozupone, JIStombaugh, JIGordon, JKJansson, RKnight. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220–30.
  • JQin, RLi, JRaes, MArumugam, KSBurgdorf, CManichanh, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59–65.
  • MRajilic-Stojanovic, HGHeilig, STims, EGZoetendal, WMde Vos. Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol 2013;15:1146–59.
  • TYatsunenko, FERey, MJManary, ITrehan, MGDominguez-Bello, MContreras, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222–7.
  • MHFraher, PWO’Toole, EMQuigley. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 2012;9:312–22.
  • EGZoetendal, MRajilic-Stojanovic, WMde Vos. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605–15.
  • DGevers, SKugathasan, LADenson, YVazquez-Baeza, WVan Treuren, BRen, et al. The treatment-naive microbiome in new-onset Crohn´s disease. Cell Host Microbe 2014;15:382–92.
  • PLepage, RHasler, MESpehlmann, ARehman, AZvirbliene, ABegun, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011;141:227–36.
  • DNFrank, ALSt Amand, RAFeldman, ECBoedeker, NHarpaz, NRPace. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007;104:13780–5.
  • CManichanh, NBorruel, FCasellas, FGuarner. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 2012;9:599–608.
  • CLMaynard, COElson, RDHatton, CTWeaver. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012;489:231–41.
  • LNylund, RSatokari, SSalminen, WMde Vos. Intestinal microbiota during early life - impact on health and disease. Proc Nutr Soc 2014; Epub ahead of print.
  • IAdlerberth, AEWold. Establishment of the gut microbiota in western infants. Acta Paediatr 2009;98:229–38.
  • SRautava, RLuoto, SSalminen, EIsolauri. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 2012;9:565–76.
  • TRingel-Kulka, JCheng, YRingel, JSalojärvi, ICarroll, APalva, et al. Intestinal microbiota in healthy U.S. young children and adults--a high throughput microarray analysis. PLoS One 2013;8:e64315.
  • LBiedermann, JZeitz, JMwinyi, ESutter-Minder, ARehman, SJOtt, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 2013;8:e59260.
  • EAMutlu, PMGillevet, HRangwala, MSikaroodi, ANaqvi, PAEngen, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012;302:G966–78.
  • ASalonen, WMde Vos. Impact of diet on human intestinal microbiota and health. Annu Rev Food Sci Technol 2014;5:239–62.
  • EBiagi, LNylund, MCandela, ROstan, LBucci, EPini, et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010;5:e10667.
  • MJClaesson, SCusack, OO’Sullivan, RGreene-Diniz, Hde Weerd, EFlannery, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108:4586–91.
  • SFClarke, EFMurphy, OO’Sullivan, AJLucey, MHumphreys, AHogan, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; Epub ahead of print.
  • AEPerez-Cobas, MJGosalbes, AFriedrichs, HKnecht, AArtacho, KEismann, et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut 2013;62:1591–601.
  • AKBenson, SAKelly, RLegge, FMa, SJLow, JKim, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 2010;107:18933–8.
  • ASpor, OKoren, RLey. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011;9:279–90.
  • MOlivares, ANeef, GCastillejo, GDPalma, VVarea, ACapilla, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut 2014; Epub ahead of print.
  • DNFrank, CERobertson, CMHamm, ZKpadeh, TZhang, HChen, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 2011;17:179–84.
  • DPMcGovern, MRJones, KDTaylor, KMarciante, XYan, MDubinsky, et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with crohn’s disease. Hum Mol Genet 2010;19:3468–76.
  • PWacklin, HMäkivuokko, NAlakulppi, JNikkilä, HTenkanen, JRabina, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of bifidobacteria in the human intestine. PLoS One 2011;6:e20113.
  • PWacklin, JTuimala, JNikkilä, TSebastian, HMäkivuokko, NAlakulppi, et al. Faecal microbiota composition in adults is associated with the FUT2 gene determining the secretor status. PLoS One 2014;9:e94863.
  • MFallani, DYoung, JScott, ENorin, SAmarri, RAdam, et al. Intestinal microbiota of 6-week-old infants across europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010;51:77–84.
  • LCRoger, ACostabile, DTHolland, LHoyles, ALMcCartney. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 2010;156:3329–41.
  • CPalmer, EMBik, DBDiGiulio, DARelman, POBrown. Development of the human infant intestinal microbibiota. PLoS Biol 2007;5:e177.
  • LNylund, RSatokari, JNikkilä, MRajilic-Stojanovic, MKalliomäki, EIsolauri, et al. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol 2013;13:12.
  • LDethlefsen, DARelman. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 2011;108:4554–61.
  • RAgans, LRigsbee, HKenche, SMichail, HJKhamis, OPaliy. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 2011;77:404–12.
  • KKorpela, HJFlint, AMJohnstone, JLappi, KPoutanen, EDewulf, et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One 2014;9:e90702.
  • GDWu, JChen, CHoffmann, KBittinger, YYChen, SAKeilbaugh, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105–8.
  • HJFlint, KPScott, PLouis, SHDuncan. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012;9:577–89.
  • FFouhy, CMGuinane, SHussey, RWall, CARyan, EMDempsey, et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 2012;56:5811–20.
  • HEJakobsson, CJernberg, AFAndersson, MSjolund-Karlsson, JKJansson, LEngstrand. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010;5:e9836.
  • MCRea, ADobson, OO’Sullivan, FCrispie, FFouhy, PDCotter, et al. Effect of broad- and narrow-spectrum antimicrobials on clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci USA 2011;108:4639–44.
  • LVirta, AAuvinen, HHelenius, PHuovinen, KLKolho. Association of repeated exposure to antibiotics with the development of pediatric crohn’s disease – a nationwide, register-based finnish case-control study. Am J Epidemiol 2012;175:775–84.
  • AHviid, HSvanstrom, MFrisch. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011;60:49–54.
  • KMarild, WYe, BLebwohl, PHGreen, MJBlaser, TCard, et al. Antibiotic exposure and the development of coeliac disease: A nationwide case-control study. BMC Gastroenterol 2013;13:109.
  • FCasellas, NBorruel, MPapo, FGuarner, MAntolin, SVidela, et al. Antiinflammatory effects of enterically coated amoxicillin-clavulanic acid in active ulcerative colitis. Inflamm Bowel Dis 1998;4:1–5.
  • GRD’Haens, KGeboes, MPeeters, FBaert, FPenninckx, PRutgeerts. Early lesions of recurrent crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998;114:262–7.
  • PDewint, BEHansen, EVerhey, BOldenburg, DWHommes, MPierik, et al. Adalimumab combined with ciprofloxacin is superior to adalimumab monotherapy in perianal fistula closure in crohn’s disease: A randomised, double-blind, placebo controlled trial (ADAFI). Gut 2014;63:292–9.
  • CManichanh, LRigottier-Gois, EBonnaud, KGloux, EPelletier, LFrangeul, et al. Reduced diversity of faecal microbiota in crohn’s disease revealed by a metagenomic approach. Gut 2006;55:205–11.
  • SJOtt, MMusfeldt, DFWenderoth, JHampe, OBrant, URFolsch, et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004;53:685–93.
  • MRajilic-Stojanovic, FShanahan, FGuarner, WMde Vos. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis 2013;19:481–8.
  • SONoor, KRidgway, LScovell, EKKemsley, EKLund, CJamieson, et al. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol 2010;10:134.
  • CMartinez, MAntolin, JSantos, ATorrejon, FCasellas, NBorruel, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol 2008;103:643–8.
  • YFurusawa, YObata, SFukuda, TAEndo, GNakato, DTakahashi, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446–50.
  • NArpaia, CCampbell, XFan, SDikiy, Jvan der Veeken, PdeRoos, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013;504:451–5.
  • PMSmith, MRHowitt, NPanikov, MMichaud, CAGallini, MBohlooly-Y, et al. The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science 2013;341:569–73.
  • IMukhopadhya, RHansen, EMEl-Omar, GLHold. IBD-what role do proteobacteria play? Nat Rev Gastroenterol Hepatol 2012;9:219–30.
  • JLRound, SKMazmanian. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313–23.
  • LRigottier-Gois. Dysbiosis in inflammatory bowel diseases: The oxygen hypothesis. ISME J 2013;7:1256–61.
  • TOhkusa, NSato, TOgihara, KMorita, MOgawa, IOkayasu. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol 2002;17:849–53.
  • HSokol, BPigneur, LWatterlot, OLakhdari, LGBermudez-Humaran, JJGratadoux, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of crohn disease patients. Proc Natl Acad Sci USA 2008;105:16731–6.
  • HSokol, PSeksik, JPFuret, OFirmesse, INion-Larmurier, LBeaugerie, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009;15:1183–9.
  • EVarela, CManichanh, MGallart, ATorrejon, NBorruel, FCasellas, et al. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther 2013;38:151–61.
  • YCao, JShen, ZHRan. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterol Res Pract 2014;2014:872725.
  • XQiu, MZhang, XYang, NHong, CYu. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis 2013;7:e558–68.
  • AHCarlsson, OYakymenko, IOlivier, FHakansson, EPostma, AVKeita, et al. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol 2013;48:1136–44.
  • CBelzer, WMde Vos. Microbes inside – from diversity to function: The case of Akkermansia. ISME J 2012;6:1449–58.
  • CWPng, SKLinden, KSGilshenan, EGZoetendal, CSMcSweeney, LISly, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010;105:2420–8.
  • CSKang, MBan, EJChoi, HGMoon, JSJeon, DKKim, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One 2013;8:e76520.
  • JReunanen, VKainulainen, LHuuskonen, NOttman, CBeltzer, HHuhtinen, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of epithelial cell layer. 2014; Submitted for publication.
  • RMartín, FChain, SMiquel, JLu, JJGratadoux, HSokol, et al. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm Bowel Dis 2014;20:417–30.
  • AEverard, CBelzer, LGeurts, JPOuwerkerk, CDruart, LBBindels, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013;110:9066–71.
  • MTAbreu. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat Rev Immunol 2010;10:131–44.
  • JMWells, ORossi, MMeijerink, Pvan Baarlen. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 2011;108:4607–14.
  • LDubuquoy, EAJansson, SDeeb, SRakotobe, MKaroui, JFColombel, et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 2003;124:1265–76.
  • ECario, DKPodolsky. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68:7010–17.
  • GSoboll Hussey, LVAshton, AMQuintana, DPLunn, LSGoehring, KAnnis, et al. Innate immune responses of airway epithelial cells to infection with equine herpesvirus-1. Vet Microbiol 2014;170:28–38.
  • ARizzo, ALosacco, CRCarratelli. Lactobacillus crispatus modulates epithelial cell defense against Candida albicans through toll-like receptors 2 and 4, interleukin 8 and human beta-defensins 2 and 3. Immunol Lett 2013;156:102–9.
  • JRO’Hara, TDFeener, CDFischer, AGBuret. Campylobacter jejuni disrupts protective toll-like receptor 9 signaling in colonic epithelial cells and increases the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun 2012;80:1563–71.
  • MKalliomäki, SRajala, HElamo, MAshorn, TRuuska. Increased expression of CXCL16, a bacterial scavenger receptor, in the colon of children with ulcerative colitis. J Crohns Colitis 2014; Epub ahead of print.
  • IJFuss, BJoshi, ZYang, HDegheidy, SFichtner-Feigl, Hde Souza, et al. IL-13Ralpha2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut 2014; Epub ahead of print.
  • TOlszak, DAn, SZeissig, MPVera, JRichter, AFranke, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012;336:489–93.
  • HBWang, PYWang, XWang, YLWan, YCLiu. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription. Dig Dis Sci 2012;57:3126–35.
  • NBurger-van Paassen, AVincent, PJPuiman, Mvan der Sluis, JBouma, GBoehm, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem J 2009;420:211–19.
  • KAtarashi, TTanoue, KOshima, WSuda, YNagano, HNishikawa, et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 2013;500:232–6.
  • TJBorody, AKhoruts. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 2011;9:88–96.
  • EMattila, RUusitalo-Seppälä, MWuorela, LLehtola, HNurmi, MRistikankare, et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 2012;142:490–6.
  • Evan Nood, AVrieze, MNieuwdorp, SFuentes, EGZoetendal, WMde Vos, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407–15.
  • SFuentes, Evan Nood, STims, IHeikamp-de Jong, CJTer Braak, JJKeller, et al. Reset of a critically disturbed microbial ecosystem: Faecal transplant in recurrent Clostridium difficile infection. ISME J 2014;8:1621–33.
  • MJHamilton, ARWeingarden, TUnno, AKhoruts, MJSadowsky. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013;4:125–35.
  • SAngelberger, WReinisch, AMakristathis, CLichtenberger, CDejaco, PPapay, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 2013;108:1620–30.
  • TJBorody, JCampbell. Fecal microbiota transplantation: Techniques, applications, and issues. Gastroenterol Clin North Am 2012;41:781–803.
  • PMoayyedi, MSurette, MWolfe, RTaraschi, PKim, JLibertucci, et al. A randomized, placebo controlled trial on fecal microbiota therapy in active ulcerative colitis. Abstract (929c) and presentation in the Digestive Disease Week 2014 (DDW2014) congress; 5 – 7 May 2014; Chigaco, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.