910
Views
22
CrossRef citations to date
0
Altmetric
Review

Intestinal barrier homeostasis in inflammatory bowel disease

&
Pages 3-12 | Received 10 Sep 2014, Accepted 28 Sep 2014, Published online: 19 Dec 2014

References

  • SMondot, Tde Wouters, JDoré, PLepage. The human gut microbiome and its dysfunctions. Dig Dis 2013;31:278–85.
  • VJohansson ME, MPhillipson, JPetersson, AVelcich, LHolm, GCHansson. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 2008;105:15064–9.
  • HLWeiner, APda Cunha, FQuintana, HWu. Oral tolerance. Immunol Rev 2011;241:241–59.
  • PBrandtzaeg, HSCarlsen, TSHalstensen. The B-cell system in inflammatory bowel disease. In RSBlumberg, MFNeurath, editors. Immune mechanisms in inflammatory bowel disease. Springer, New York; 200. pp 19.
  • NBarker, JHvan Es, JKuipers, Mvan den Born, MCozijnsen, AHaegebarth, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003–7.
  • TSato, RGVries, HJSnippert, Mvan de Wetering, NBarker, DEStange, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009;459:262–5.
  • HClevers. Stem Cells: A unifying theory for the crypt. Nature 2013;495:53–4.
  • VWalther, TAGraham. Location, location, location! The reality of life for an intestinal stem cell in the crypt. J Pathol 2014;234:1–4.
  • HTian, BBiehs, SWarming, KGLeong, LRangell, ODKlein, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2012;482:120–0.
  • CMetcalfe, NMKljavin, RYbarra, FJDe Sauvage. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 2014;14:149–59.
  • CPLeblond, BEWalker. Renewal of cell populations. Physiol Rev 1956;36:255–76.
  • NBarker. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2014;15:19–33.
  • DPinto, AGregorieff, HBegthel, HClevers. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 2003;17:1709–13.
  • TFevr, SRobine, DLouvard, JHuelsken. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 2007;27:7551–9.
  • TPeeters, GVantrappen. The Paneth cell: a source of intestinal lysozyme. Gut 1975;16:553–8.
  • NHSalzman, KHung, DHaribhai, HChu, JKarlsson-Sjöberg, EAmir, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 2010;11:76–83.
  • MTanaka, HSaito, TKusumi, SFukuda, TShimoyama, YSasaki, et al. Spatial distribution and histogenesis of colorectal Paneth cell metaplasia in idiopathic inflammatory bowel disease. J Gastroenterol Hepatol 2001;16:1353–9.
  • NSimmonds, MFurman, EKaranika, APhillips, AWHBates. Paneth cell metaplasia in newly diagnosed inflammatory bowel disease in children. BMC Gastroenterol 2014;14:93.
  • AVan Beelen Granlund, AEØstvik, ØBrenna, SHTorp, BIGustafsson, AKSandvik. REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation. Cell Tissue Res 2013;352:639–46.
  • AGregorieff, DPinto, HBegthel, ODestrée, MKielman, HClevers. Expression Pattern of Wnt Signaling Components in the Adult Intestine. Gastroenterology 2005;129:626–38.
  • SSPoulsen, ENexø, PSOlsen, JHess, PKirkegaard. Immunohistochemical localization of epidermal growth factor in rat and man. Histochemistry 1986;85:389–94.
  • TSato, JHvan Es, HJSnippert, DEStange, RGVries, Mvan de Born, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011;469:415–18.
  • HIreland, CHoughton, LHoward, DJWinton. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev Dyn 2005;233:1332–6.
  • Buczacki SJ a, Zecchini HI, Nicholson AM, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013;495:65–9.
  • SRoth, PFranken, ASacchetti, AKremer, KAnderson, OSansom, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One 2012;7.
  • MECBruno, LFrantz a, EWRogier, F-EJohansen, CSKaetzel. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells. Mucosal Immunol 2011;4:468–78.
  • MBrittan, NAWright. Gastrointestinal stem cells. J Pathol 2002;197:492–509.
  • JLMadara. Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol 1990;116:177–84.
  • LVereecke, RBeyaert, Gvan Loo. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med 2011;17:584–93.
  • RThibault, FBlachier, BDarcy-Vrillon, Pde Coppet, ABourreille, J-PSegain. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 2010;16:684–95.
  • MBordin, FD’Atri, LGuillemot, SCiti. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res 2004;2:692–701.
  • HSchmitz, MFromm, CJBentzel, PScholz, KDetjen, JMankertz, et al. Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci 1999;112:137–46.
  • MMBuschmann, LShen, HRajapakse, DRRaleigh, YWang, YWang, et al. Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell 2013;24:3056–68.
  • HSchmitz, CBarmeyer, MFromm, NRunkel, HDFoss, CJBentzel, et al. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 1999;116:301–9.
  • SHe, LWang, LMiao, TWang, FDu, LZhao, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009;137:1100–11.
  • PFPiguet, CVesin, JGuo, YDonati, CBarazzone. TNF-induced enterocyte apoptosis in mice is mediated by the TNF receptor 1 and does not require p53. Eur J Immunol 1998;28:3499–505.
  • GHaraldsen, JBalogh, JPollheimer, JSponheim, AMKüchler. Interleukin-33 - cytokine of dual function or novel alarmin? Trends Immunol 2009;30:227–33.
  • JSchmitz, AOwyang, EOldham, YSong, EMurphy, TKMcClanahan, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005;23:479–90.
  • SCGribar, WMRichardson, CPSodhi, DJHackam. No Longer an Innocent Bystander: Epithelial Toll-Like Receptor Signaling in the Development of Mucosal Inflammation. Mol Med 2008;14:645–59.
  • NMiron, VCristea. Enterocytes: Active cells in tolerance to food and microbial antigens in the gut. Clin Exp Immunol 2012;167:405–12.
  • JLee, J-HMo, KKatakura, IAlkalay, ANRucker, YTLiu, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 2006;8:1327–36.
  • AVelcich, WYang, JHeyer, AFragale, CNicholas, SViani, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002;295:1726–9.
  • MVan der Sluis, BAEDe Koning, ACJMDe Bruijn, AVelcich, JPMeijerink, JBVan Goudoever, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006;131:117–29.
  • JGrootjans, IHHundscheid, WABuurman. Goblet cell compound exocytosis in the defense against bacterial invasion in the colon exposed to ischemia-reperfusion. Gut Microbes 2013;4:232–5.
  • ARGunawardene, BMCorfe, CAStaton. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011;92:219–31.
  • JEBlalock. The immune system as the sixth sense. J Intern Med 2005;257:126–38.
  • EGonzalez-Rey, AChorny, MDelgado. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat Rev Immunol 2007;7:52–63.
  • SAshizuka, HInatsu, KInagaki-Ohara, TKita, KKitamura. Adrenomedullin as a potential therapeutic agent for inflammatory bowel disease. Curr Protein Pept Sci 2013;14:246–55.
  • SAshizuka, TKita, HInatsu, KKitamura. Adrenomedullin: A novel therapy for intractable ulcerative colitis. Inflamm Bowel Dis 2013;19:E26–7.
  • NMBarnes, TSharp. A review of central 5-HT receptors and their function. Neuropharmacology 1999;38:1083–152.
  • MRYoung, JPMatthews. Serotonin regulation of T-cell subpopulations and of macrophage accessory function. Immunology 1995;84:148–52.
  • J-EGhia, NLi, HWang, MCollins, YDeng, RTEl-Sharkawy, et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009;137:1649–60.
  • VJohansson ME, JKGustafsson, JHolmén-Larsson, KSJabbar, LXia, HXu, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014;63:281–91.
  • MAndrianifahanana, NMoniaux, SKBatra. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta 2006;1765:189–222.
  • APCorfield. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 2014. 10.1016/j.bbagen.2014.05.003.
  • JMHLarsson, HKarlsson, HSjövall, GCHansson. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 2009;19:756–66.
  • SEtzold, NJuge. Structural insights into bacterial recognition of intestinal mucins. Curr Opin Struct Biol 2014;28C:23–31.
  • AWalz, SOdenbreit, KStühler, AWattenberg, HEMeyer, JMahdavi, et al. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 2009;9:1582–92.
  • LThim, FMadsen, SSPoulsen. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur J Clin Invest 2002;32:519–27.
  • MAMcGuckin, SKLindén, PSutton, THFlorin. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011;9:265–78.
  • MLEnss, USchmidt-Wittig, HMüller, UEMai, MCoenen, HJHedrich. Response of germfree rat colonic mucous cells to peroral endotoxin application. Eur J Cell Biol 1996;71:99–104.
  • LEGlover, SPColgan. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 2011;140:1748–55.
  • RDPullan, GAThomas, MRhodes, RGNewcombe, GTWilliams, AAllen, et al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 1994;35:353–9.
  • MGersemann, SBecker, IKübler, MKoslowski, GWang, KRHerrlinger, et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation 2009;77:84–94.
  • SJMcElroy, LSPrince, J-HWeitkamp, JReese, JCSlaughter, DBPolk. Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2011;301:G656–66.
  • JIwashita, YSato, HSugaya, NTakahashi, HSasaki, TAbe. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 2003;81:275–82.
  • HJenssen, PHamill, REWHancock. Peptide antimicrobial agents. Clin Microbiol Rev 2006;19:491–511.
  • JMWells, ORossi, MMeijerink, Pvan Baarlen. Epithelial crosstalk at the microbiota–mucosal interface. Proc Natl Acad Sci USA 2011;108:4607–14.
  • ELarsson, VTremaroli, YSLee, OKoren, INookaew, AFricker, et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 2012;61:1124–31.
  • ALFrantz, EWRogier, CRWeber, LShen, DACohen, LAFenton, et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol 2012;5:501–12.
  • JWehkamp, NHSalzman, EPorter, SNuding, MWeichenthal, REPetras, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 2005;102:18129–34.
  • AChorny, IPuga, ACerutti. Regulation of frontline antibody responses by innate immune signals. Immunol Res 2012;54:4–13.
  • PBrandtzaeg. The changing immunological paradigm in coeliac disease. Immunol Lett 2006;105:127–39.
  • LXu, XTeng, JGuo, MSun. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 2012;35:308–15.
  • ABuda, MAJepson, MPignatelli. Regulatory function of trefoil peptides (TFF) on intestinal cell junctional complexes. Cell Commun Adhes 2012;19:63–8.
  • LAamann, EMVestergaard, HGrønbæk. Trefoil factors in inflammatory bowel disease. World J Gastroenterol 2014;20:3223–30.
  • AMahmood, LMelley, AJFitzgerald, SGhosh, RJPlayford. Trial of trefoil factor 3 enemas, in combination with oral 5-aminosalicylic acid, for the treatment of mild-to-moderate left-sided ulcerative colitis. Aliment Pharmacol Ther 2005;21:1357–64.
  • ABhattacharyya, RChattopadhyay, SMitra, SECrowe. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014;94:329–54.
  • EMConner, SJBrand, JMDavis, DYKang, MBGrisham. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: toxins, mediators, and modulators of gene expression. Inflamm Bowel Dis 1996;2:133–47.
  • KPPavlick, FSLaroux, JFuseler, REWolf, LGray, JHoffman, et al. Serial review: reactive oxygen and nitrogen in inflammation guest editor: giuseppe poli role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med 2002;33:311–22.
  • SHengstermann, LValentini, LSchaper, CBuning, TKoernicke, MMaritschnegg, et al. Altered status of antioxidant vitamins and fatty acids in patients with inactive inflammatory bowel disease. Clin Nutr 2008;27:571–8.
  • YShiratora, SAoki, HTakada, HKiriyama, KOhto, KHai, et al. Oxygen-derived free radical generating capacity of polymorphonuclear cells in patients with ulcerative colitis. Digestion 1989;44:163–71.
  • MLHarris, HJSchiller, PMReilly, MDonowitz, MBGrisham, GBBulkley. Free radicals and other reactive oxygen metabolites in inflammatory bowel disease: cause, consequence or epiphenomenon? Pharmacol Ther 1992;53:375–408.
  • LPastorelli, CDe Salvo, JRMercado, MVecchi, TTPizarro. Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Front Immunol 2013;4:280.
  • JMankertz, J-DSchulzke. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 2007;23:379–83.
  • BGranlund A van, AFlatberg, AEØstvik, IDrozdov, BIGustafsson, MKidd, et al. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between crohn’s disease and ulcerative colitis. PLoS One 2013;8. e56818.
  • DHollander, CMVadheim, EBrettholz, GMPetersen, TDelahunty, JIRotter. Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann Intern Med 1986;105:883–5.
  • TSuzuki. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013;70:631–59.
  • DYe, IMa, TYMa. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 2006;290:G496–504.
  • AJMWatson, KRHughes. TNF-??-induced intestinal epithelial cell shedding: Implications for intestinal barrier function. Ann N Y Acad Sci 2012;1258:1–8.
  • RKiesslich, MGoetz, EMAngus, QHu, YGuan, CPotten, et al. Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 2007;133:1769–78.
  • LGLim, JNeumann, THansen, MGoetz, AHoffman, MFNeurath, et al. Confocal endomicroscopy identifies loss of local barrier function in the duodenum of patients with Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 2014;20:892–900.
  • MKidd, BIGustafsson, IDrozdov, IMModlin. IL1beta- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol Motil 2009;21:439–50.
  • ADLevin, GRvan den Brink. Selective inhibition of mucosal serotonin as treatment for IBD? Gut 2014;63:866–7.
  • KGMargolis, KStevanovic, ZLi, QMYang, TOravecz, BZambrowicz, et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 2014;63:928–37.
  • JFCryan, TGDinan. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701–12.
  • CNBernstein, JRWalker, LAGraff. On studying the connection between stress and IBD. Am J Gastroenterol 2006;101:782–5.
  • IArijs, GDe Hertogh, KLemaire, RQuintens, LVan Lommel, KVan Steen, et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS One 2009;4. e7984.
  • J-MOtte, SVordenbäumen. Role of Antimicrobial Peptides in Inflammatory Bowel Disease. Polymers (Basel) 2011;3:2010–17.
  • SHo, CPothoulakis, HWKoon. Antimicrobial peptides and colitis. Curr Pharm Des 2013;19:40–7.
  • SLala, YOgura, COsborne, SYHor, ABromfield, SDavies, et al. Crohn’s disease and the NOD2 gene: A role for paneth cells. Gastroenterology 2003;125:47–57.
  • JWehkamp, JHarder, MWeichenthal, MSchwab, ESchäffeler, MSchlee, et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 2004;53:1658–64.
  • LASimms, JDDoecke, MDWalsh, NHuang, VFowler E, GLRadford-Smith. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn’s disease. Gut 2008;57:903–10.
  • MTShanahan, IMCarroll, EGrossniklaus, AWhite, RJvon Furstenberg, RBarner, et al. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut 2014;63:903–10.
  • KCadwell, JYLiu, SLBrown, HMiyoshi, JLoh, JKLennerz, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008;456:259–63.
  • JWehkamp, EFStange. Paneth’s disease. J Crohn’s Colitis 2010;4:523–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.