10,009
Views
61
CrossRef citations to date
0
Altmetric
Review

The genetics of Crohn’s disease and ulcerative colitis – status quo and beyond

, , &
Pages 13-23 | Received 02 Nov 2014, Accepted 18 Nov 2014, Published online: 19 Dec 2014

References

  • JCBarrett, SHansoul, DLNicolae, JHCho, RHDuerr, JDRioux, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008;40:955–62.
  • AFranke, DPMcGovern, JCBarrett, KWang, GLRadford-Smith, TAhmad, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 2010;42:1118–25.
  • CAAnderson, GBoucher, CWLees, AFranke, MD’Amato, KDTaylor, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011;43:246–52.
  • IPe’er, RYelensky, DAltshuler, MJDaly. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 2008;32:381–5.
  • JZLiu, CAAnderson. Genetic studies of Crohn’s disease: past, present and future. Best Pract Res Clin Gastroenterol 2014;28:373–86.
  • BKhor, AGardet, RJXavier. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011;474:307–17.
  • ETCirulli, DBGoldstein. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 2010;11:415–25.
  • LJostins, SRipke, RKWeersma, RHDuerr, DPMcGovern, KYHui, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012;491:119–24.
  • MBBengtson, CSolberg, GAamodt, JJahnsen, BMoum, JSauar, et al. Clustering in time of familial IBD separates ulcerative colitis from Crohn’s disease. Inflamm Bowel Dis 2009;15:1867–74.
  • MParkes, ACortes, DAvan Heel, MABrown. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet 2013;14:661–73.
  • CWLees, JCBarrett, MParkes, JSatsangi. New IBD genetics: common pathways with other diseases. Gut 2011;60:1739–53.
  • MARivas, MBeaudoin, AGardet, CStevens, YSharma, CKZhang, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 2011;43:1066–73.
  • YMomozawa, MMni, KNakamura, WCoppieters, SAlmer, LAmininejad, et al. Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat Genet 2011;43:43–7.
  • MBeaudoin, PGoyette, GBoucher, et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet 2013;9:e1003723.
  • SDas, PEStuart, JDing, TTejasvi, YLi, LCTsoi, et al. Fine mapping of eight psoriasis susceptibility loci. Eur J Hum Genet 2014. [ Epub ahead of print] [Accessed 3 September 2014].
  • SCNg, KKTsoi, MAKamm, BXia, JWu, FKChan, et al. Genetics of inflammatory bowel disease in Asia: systematic review and meta-analysis. Inflamm Bowel Dis 2012;18:1164–76.
  • DAvan Heel, SAFisher, AKirby, MJDaly, JDRioux, CMLewis; Genome Scan Meta-Analysis Group of the IBD International Genetics Consortium. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet 2004;13:763–70.
  • XJia, BHan, SOnengut-Gumuscu, WMChen, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 2013;8(6):e64683.
  • ATDilthey, LMoutsianas, SLeslie, GMcVean. HLA*IMP–an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics 2011;27(7):968–72.
  • JPAchkar, LKlei, PIde Bakker, GBellone, NRebert, RScott, et al. Amino acid position 11 of HLA-DRbeta1 is a major determinant of chromosome 6p association with ulcerative colitis. Genes Immun 2012;13:245–52.
  • DJWoodsworth, MCastellarin, RAHolt. Sequence analysis of T-cell repertoires in health and disease. Genome Med 2013;5:98.
  • JDengjel, PDecker, OSchoor, FAltenberend, TWeinschenk, HGRammensee, et al. Identification of a naturally processed cyclin D1 T-helper epitope by a novel combination of HLA class II targeting and differential mass spectrometry. Eur J Immunol 2004;34:3644–51.
  • EAFesten, RKWeersma. How will insights from genetics translate to clinical practice in inflammatory bowel disease? Best Pract Res Clin Gastroenterol 2014;28:387–97.
  • HHUhlig. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 2013;62:1795–805.
  • EOGlocker, DKotlarz, KBoztug, EMGertz, AASchäffer, FNoyan, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 2009;361:2033–45.
  • EOGlocker, NFrede, MPerro, NSebire, MElawad, NShah, et al. Infant colitis – it’s in the genes. Lancet 2010;376:1272.
  • AFranke, TBalschun, THKarlsen, JSventoraityte, SNikolaus, GMayr, et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 2008;40:1319–23.
  • DCBlaydon, PBiancheri, WLDi, VPlagnol, RMCabral, MABrooke, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med 2011;365:1502–8.
  • YZeissig, BSPetersen, SMilutinovic, EBosse, GMayr, KPeuker, et al. XIAP variants in male Crohn’s disease. Gut 2014. [ Epub ahead of print] [Accessed 26 February 2014].
  • HHUhlig, TSchwerd, SKoletzko, NShah, JKammermeier, AElkadri, et al. The Diagnostic Approach to Monogenic Very Early Onset Inflammatory Bowel Disease. Gastroenterology 2014;147(5):990–1007.
  • AKaser, SZeissig, RSBlumberg. Inflammatory bowel disease. Annu Rev Immunol 2010;28:573–621.
  • DBGraham, RJXavier. From genetics of inflammatory bowel disease towards mechanistic insights. Trends Immunol 2013;34:371–8.
  • JHampe, AFranke, PRosenstiel, ATill, MTeuber, KHuse, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007;39:207–11.
  • KCadwell, JYLiu, SLBrown, HMiyoshi, JLoh, JKLennerz, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008;456:259–63.
  • KCadwell, KKPatel, NSMaloney, TCLiu, ACNg, CEStorer, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 2010;141:1135–45.
  • AMMarchiando, DRamanan, YDing, LEGomez, VMHubbard-Lucey, KMaurer, et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 2013;14:216–24.
  • VMHubbard-Lucey, YShono, KMaurer, MLWest, NVSinger, CGZiegler, et al. Autophagy Gene Atg16l1 Prevents Lethal T Cell Alloreactivity Mediated by Dendritic Cells. Immunity 2014;41:579–91.
  • AMurthy, YLi, IPeng, MReichelt, AKKatakam, RNoubade, et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 2014;506:456–62.
  • TEAdolph, MFTomczak, LNiederreiter, HJKo, JBöck, EMartinez-Naves, et al. Paneth cells as a site of origin for intestinal inflammation. Nature 2013;503:272–6.
  • TSaitoh, NFujita, MHJang, SUematsu, BGYang, TSatoh, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008;456:264–8.
  • ICleynen, JRGonzalez, CFigueroa, AFranke, DMcGovern, MBortlík, et al. Genetic factors conferring an increased susceptibility to develop Crohn’s disease also influence disease phenotype: results from the IBDchip European Project. Gut 2013;62:1556–65.
  • LJostins, JCBarrett. Genetic risk prediction in complex disease. Hum Mol Genet 2011;20:R182–8.
  • HWang, HYang, CSShivalila, MMDawlaty, AWCheng, FZhang, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013;153:910–18.
  • EPConsortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57–74.
  • MTMaurano, RHumbert, ERynes, REThurman, EHaugen, HWang, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190–5.
  • DEllinghaus, HZhang, SZeissig, SLipinski, ATill, TJiang, et al. Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology 2013;145:339–47.
  • SAMcCarroll, AHuett, PKuballa, SDChilewski, ALandry, PGoyette, et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 2008;40:1107–12.
  • CDBrown, LMMangravite, BEEngelhardt. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet 2013;9:e1003649.
  • TAManolio, FSCollins, NJCox, DBGoldstein, LAHindorff, DJHunter, et al. Finding the missing heritability of complex diseases. Nature 2009;461:747–53.
  • EEEichler, JFlint, GGibson, AKong, SMLeal, JHMoore, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446–50.
  • RLJirtle, MKSkinner. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007;8:253–62.
  • BRCarone, LFauquier, NHabib, JMShea, CEHart, RLi, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010;143:1084–96.
  • VHughes. Epigenetics: The sins of the father. Nature 2014;507:22–4.
  • BGDias, KJRessler. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014;17:89–96.
  • EJRadford, MIto, HShi, JACorish, KYamazawa, EIsganaitis, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014;345:1255903.
  • LJiang, JZhang, JJWang, LWang, LZhang, GLi, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 2013;153:773–84.
  • MKSkinner, MManikkam, RTracey, CGuerrero-Bosagna, MHaque, EENilsson. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 2013;11:228.
  • DGevers, SKugathasan, LADenson, YVázquez-Baeza, WVan Treuren, BRen, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 2014;15:382–92.
  • ACouturier-Maillard, TSecher, ARehman, SNormand, ADe Arcangelis, RHaesler, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 2013;123:700–11.
  • PRosenstiel, CSina, AFranke, SSchreiber. Towards a molecular risk map – recent advances on the etiology of inflammatory bowel disease. Semin Immunol 2009;21:334–45.
  • PRausch, ARehman, SKunzel, RHäsler, SJOtt, SSchreiber, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci USA 2011;108:19030–5.
  • CQuince, EELundin, ANAndreasson, DGreco, JRafter, NJTalley, et al. The impact of Crohn’s disease genes on healthy human gut microbiota: a pilot study. Gut 2013;62:952–4.
  • KYamazaki, DMcGovern, JRagoussis, MPaolucci, HButler, DJewell, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 2005;14:3499–506.
  • RHDuerr, KDTaylor, SRBrant, JDRioux, MSSilverberg, MJDaly, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461–3.
  • AFranke, JHampe, PRosenstiel, CBecker, FWagner, RHäsler, et al. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS One 2007;2:e691.
  • JVRaelson, RDLittle, ARuether, HFournier, BPaquin, PVan Eerdewegh, et al. Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci USA 2007;104:14747–52.
  • CLibioulle, ELouis, SHansoul, CSandor, FFarnir, DFranchimont, et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 2007;3:e58.
  • The Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–78.
  • SAFisher, MTremelling, CAAnderson, RGwilliam, SBumpstead, NJPrescott, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 2008;40:710–12.
  • SKugathasan, RNBaldassano, JPBradfield, PMSleiman, MImielinski, SLGuthery, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet 2008;40:1211–15.
  • MSSilverberg, JHCho, JDRioux, DPMcGovern, JWu, VAnnese, et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet 2009;41:216–20.
  • KAsano, TMatsushita, JUmeno, NHosono, ATakahashi, TKawaguchi, et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat Genet 2009;41:1325–9.
  • Consortium UIG. JCBarrett, JCLee, CWLees, NJPrescott, CAAnderson, APhillips, et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 2009;41:1330–4.
  • MImielinski, RNBaldassano, AGriffiths, RKRussell, VAnnese, MDubinsky, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet 2009;41:1335–40.
  • AFranke, TBalschun, CSina, DEllinghaus, RHäsler, GMayr, et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet 2010;42:292–4.
  • KWang, RBaldassano, HZhang, HQQu, MImielinski, SKugathasan, et al. Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum Mol Genet 2010;19:2059–67.
  • DPMcGovern, AGardet, LTorkvist, PGoyette, JEssers, KDTaylor, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet 2010;42:332–7.
  • EEKenny, IPe’er, AKarban, LOzelius, AAMitchell, SMNg, et al. A genome-wide scan of Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet 2012;8:e1002559.
  • AJulia, EDomenech, ERicart, RTortosa, VGarcía-Sánchez, JPGisbert, et al. A genome-wide association study on a southern European population identifies a new Crohn’s disease susceptibility locus at RBX1-EP300. Gut 2013;62:1440–5.
  • KYamazaki, JUmeno, ATakahashi, AHirano, TAJohnson, NKumasaka, et al. A genome-wide association study identifies 2 susceptibility Loci for Crohn’s disease in a Japanese population. Gastroenterology 2013;144:781–8.
  • SKYang, MHong, WZhao, YJung, JBaek, NTayebi, et al. Genome-wide association study of Crohn’s disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 2014;63:80–7.
  • AJulia, EDomenech, MChaparro, VGarcía-Sánchez, FGomollón, JPanés, et al. A genome-wide association study identifies a novel locus at 6q22.1 associated with ulcerative colitis. Hum Mol Genet 2014. [ Epub ahead of print] [Accessed 29 July 2014].
  • AKaser, SZeissig, RSBlumberg. Genes and environment: how will our concepts on the pathophysiology of IBD develop in the future? Dig Dis 2010;28:395–405.